首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
admin
2015-09-14
70
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bx=0的基础解系。
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n—r个向量,故只要证明α
1
,α
2
,…,α
n-r
,是方程组Bx=0的线性无关解向量即可。首先,由行列式的性质,有[*]=0(i=1,2,…,r;k=r+1,r+2,…,n)。故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
,正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n一r个线性无关解向量,从而可作为Bx=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/ieU4777K
0
考研数学三
相关试题推荐
政府和市场的关系问题,是一个世界性的问题。它既是经济理论研究的焦点,也是各国经济发展实践中的难点。回望40多年的改革开放历程,我们坚持以发展为第一要务,不断理顺政府和市场的关系,取得了令世人瞩目的巨大成就。处理政府和市场的关系中,更好发挥政府作用,要求
辛亥革命、国民革命、共产革命是中国革命过程中相互衔接、演进的三个阶段,前一次革命为后一次革命“预留”了空间,后一次革命在前一次革命的基础上推进。正是这三次革命的相互关联、递进,共同构建了“中国革命”这一历史事件。近代中国革命的主要形式是
实践充分证明,人民代表大会制度是符合中国国情和实际、体现社会主义国家性质、保证人民当家作主、保障实现中华民族伟大复兴的好制度。在中国实行人民代表大会制度是
材料1 位于长江之滨的江苏张家港,是我国犯罪率最低的城市之一。与之紧密相关的是,张家港还是首批获评全国文明城市的县级市。早在20年前,这里就以精神文明建设成就享誉全国。长期的文明浸润,涵养了这座城市的法治文化,孕育了张家港人的法治精神。 材料2
习近平总书记多次强调增强辩证思维能力的重要性,明确指出“辩证唯物主义是中国共产党人的世界观和方法论”。习近平同志在2019年4月22日上午主持召开中央财经委员会第四次会议时指出,经过几代人接续奋斗,总体而言,我国已经基本实现全面建成小康社会目标。目前,全面
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
设总体X的概率密度为而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
随机试题
黄芩、黄连、黄柏的共同功效是____________、____________;但黄芩还具有的功效是____________、____________;黄柏还具有的功效是____________。
在干燥的蛋白质中,灭活全部的人类免疫缺陷病毒,至少需要
某消防泵房动力安装工程如图6.Ⅲ所示。说明:①动力配电箱APl和AP2的尺寸均为1700mm×800mm×300mm(高×宽×厚),落地式安装。②配管水平长度见图示括号内数字,单位为m。(1)APl、AP2为定型动力配电箱,落地式安装,电源由双电
【背景资料】某大型水库枢纽工程由大坝、电站、泄洪隧洞、引水发电隧洞。溢洪道组成,大坝为黏土心墙砂壳坝。该枢纽工程除险加固的主要工程内容有:①坝基帷幕灌浆;②坝顶道路拆除重建;③上游护坡拆除重建(▽66.5m~▽100.0m);④上游坝坡石渣料帮坡
根据《合伙企业法》的规定,下列选项中,可以作为合伙企业普通合伙人出资的有()。
确定固定资产处理损益时,应考虑的因素有()。
有爱就有恨;有喜悦就有悲伤;有紧张就有轻松,说明情绪和情感()。
“得道者多助,失道者寡助。寡助之至,亲戚畔之;多助之至,天下顺之。以天下之所顺,攻亲戚之所畔,故君子有不战,战必胜矣。”——《孟子.公孙丑下》请以“得道与失道”为话题,自拟
联机分析处理(OLAP)中,“切片”的含义是
Educationgivesustheknowledgeoftheworldaroundus.Itdevelopswithusaperspectiveoflookingatlife.Ithelpsusform
最新回复
(
0
)