首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
admin
2015-09-14
30
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bx=0的基础解系。
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n—r个向量,故只要证明α
1
,α
2
,…,α
n-r
,是方程组Bx=0的线性无关解向量即可。首先,由行列式的性质,有[*]=0(i=1,2,…,r;k=r+1,r+2,…,n)。故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
,正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n一r个线性无关解向量,从而可作为Bx=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/ieU4777K
0
考研数学三
相关试题推荐
简单商品生产发展到资本主义商品生产的新阶段的标志是
物质生产方式是劳动者和劳动资料结合的特殊方式,是生产力和生产关系的统一。物质生产方式
在晋西北地区,山西省右玉县精心做好绿色发展大文章。林木覆盖率从0.3%增长到54%,从“不毛之地”到“沙漠绿洲”,从种不上庄稼、吃不上饭到享受“生态红利”……山西省右玉县时刻践行“两山”理论,将期望中的“金山银山”变为了现实。这一事例体现了实践具有
资本有机构成提高的直接后果是()。
材料1 近日,美国航天局等机构研究人员在新一期英国《自然·可持续发展》杂志发表论文说,他们在分析了美国航天局“特拉”号卫星和“阿卡”号卫星的观测数据后发现,全球从2000年到2017年新增的绿化面积中,25%以上来自中国,中国对全球绿化增量的贡献比居全
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
将函数分别展开成正弦级数和余弦级数.
讨论下列级数在指定的区间内是否一致收敛
有甲、乙、丙三个口袋,其中甲袋装有1个红球,2个白球,2个黑球;乙袋装有2个红球,1个白球,2个黑球;丙袋装有2个红球,3个白球.现任取一袋,从中任取2个球,用X表示取到的红球数,Y,表示取到的白球数,Z表示取到的黑球数。试求:(X,Y)的联合分布;
随机试题
简述网上银行的业务内容。
A、Neuraltubedefects.B、Heartproblems.C、Cleftlipandpalate.D、Diabetes.D细节题。题意:除了下列哪一种疾病,母亲肥胖的婴儿患病概率更大?根据独白信息可得知,妈妈肥胖,婴儿患神
A.螺旋体B.衣原体C.放线菌D.立克次体E.支原体在生物学上的位置介于细菌与原虫之间
按舒张压水平分级,重度高血压是指舒张压
既用于便血、痔血等血热出血,又用于湿疹的药物是
下列总监理工作师职责中,可以委托给总监理工程师代表的有()。
YoungadultfilmmakersallhopetoshowtheirworksininternationalfestivalslikeSundanceandToronto.Butwhataboutreally
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
一个好的学生由多方面的因素组成:好的学习成绩、好的道德品质、好的身体素质和好的心理素质。这几个条件,缺一不可。根据此,下列哪一个说法是正确的?
KarlVonLinne(orLinnaeus,asheiswidelyknown)wasaSwedishbiologistwhodevisedthesystemofLatinisedscientificnames
最新回复
(
0
)