首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
admin
2015-09-14
66
问题
设矩阵A=(a
ij
)
n×n
的秩为n,a
ij
的代数余子式为A
ij
(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组
是齐次线性方程组Bx=0的基础解系。
选项
答案
r(B)=r,[*]方程组Bx=0的基础解系含n—r个向量,故只要证明α
1
,α
2
,…,α
n-r
,是方程组Bx=0的线性无关解向量即可。首先,由行列式的性质,有[*]=0(i=1,2,…,r;k=r+1,r+2,…,n)。故α
1
,α
2
,…,α
n-r
都是Bx=0的解向量;其次,由于|A
*
|=|A|
n-1
≠0,知A
*
的列向量组线性无关,而α
1
,α
2
,…,α
n-r
,正好是A
*
的后n-r列,故α
1
,α
2
,…,α
n-r
线性无关,因此α
1
,α
2
,…,α
n-r
是Bx=0的n一r个线性无关解向量,从而可作为Bx=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/ieU4777K
0
考研数学三
相关试题推荐
某食品加工厂引进了一套新的智能化生产设备,使得工厂购置资产的成本提高,同时工厂人力需求减少,进行了一定规模的裁员,降低了劳动力成本。该食品加工厂的资本构成变动包括
马克思说,人在“劳动过程结束时得到的结果,在这个过程开始时就已经在劳动者的表象中存在着,即已经观念地存在着”。这表明意识活动
当前和今后一个时期,我国经济发展面临的问题,供给和需求两侧都有,但矛盾的主要方面在供给侧。比如,我国一些行业和产业产能严重过剩,同时,大量关键装备、核心技术、高端产品还依赖进口;事实证明,我国不是需求不足,或没有需求,而是需求变了,供给的产品却没有变,质量
法律权利是指反映一定的社会物质生活条件所制约的行为自由,是法律所允许的权利人为了满足自己的利益而采取的、由其他人的法律义务所保证的法律手段。法律权利的特征是
唯物辩证法认为,事物内部都存在着肯定因素和否定因素。下列关于辩证否定观的说法,正确的是
数学上有一个大家熟知的命题:“三角形的内角和等于一百八十度。”其实,这个在我们看来是真理的命题却是错误的,因为它少了一个前提条件——在平面上。只有在平面上,三角形的内角和才等于一百八十度。如果将限定条件改为在曲面上,这个结论就不成立了。这启示我们
中国共产党是最高政治领导力量,这是习近平总书记提出并反复强调的一个重大政治论断,也是习近平新时代中国特色社会主义思想的一个重要理论观点。这一重大论断和重要观点,科学概括了中国共产党在整个国家的根本地位和无可替代的领导作用,充分表达了只有中国共产党才能肩负起
代数学基本定理告诉我们,n次多项式至多有n个实根,利用此结论及罗尔定理,不求出函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数,说明方程fˊ(x)=0有几个实根,并指出它们所在的区间.
在求直线l与平面Ⅱ的交点时,可将l的参数方程x=xo+mt,y=yo+nt,z=zo+pt代入Ⅱ的方程Ax+By+Cz+D=0,求出相应的t值.试问什么条件下,t有唯一解、无穷多解或无解?并从几何上对所得结果加以说明.
证明:函数f(x)=1/xsin1/x在区间(0,1]内无界,但当x→0+时这个函数不是无穷大.
随机试题
下列选项中,属于长骨的是()。
广阔的;广泛的adj.e______
《氓》是我国古代一首著名的“思妇”诗。()
患者,肖某,呼吸由浅慢逐渐加快、加长,后又逐渐变浅、变慢,然后暂停数秒,又出现上述状态呼吸,周而复始,该患者呼吸为
患者,女,28岁。妊娠38周,患心脏病。刚临产,产科情况暂无异常。心功能Ⅱ级。在宫口接近开全时,心功能仍为Ⅱ级,首先要做好的是
失神的患者,本来是不能食,但突然可以食,这为
男,16岁,今日突发呼吸困难,发作前有鼻痒、喷嚏、流涕、干咳。体检:血压正常、端坐呼吸、额部出汗,双肺有哮鸣音.心率110次/分。律齐,无杂音。你认为下列哪种诊断正确
水是基础性的自然资源,又是()的经济资源。
按照唐律的规定,对于“决不待时”的重犯,不适用秋冬行刑,此重罪不包括()。
设区域D={(χ,y)|χ2+y2≤t2}(t>0),f(u)连续,且f(0)=0,f′(0)=2,则=_______.
最新回复
(
0
)