首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值.其中X=(x1,x2,x3)T∈R3.
已知齐次线性方程组=有非零解,且矩阵A=是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值.其中X=(x1,x2,x3)T∈R3.
admin
2019-05-11
52
问题
已知齐次线性方程组=
有非零解,且矩阵A=
是正定矩阵.(1)求a的值;(2)求当X
T
X=2时,X
T
AX的最大值.其中X=(x
1
,x
2
,x
3
)
T
∈R
3
.
选项
答案
(1)由方程组的系数行列式△=a(a+1)(a-3)=0,[*]a的取值范围为:0,-1,3,再由矩阵A正定,得a=3; (2)可求得A的最大特征值为10,设对应的单位特征向量为ξ(即Aξ=10ξ,且ξ
T
ξ=1).对二次型X
T
Ax,存在正交变换X=Py,使X
T
AX[*]λ
1
y
1
2
+λ
2
y
2
2
+λ
3
y
3
2
≤10(y
1
2
+y
2
2
+y
3
2
),当X
T
X=Y
T
Y=y
1
2
+y
2
2
+y
3
2
=2时,有X
T
AX≤10×2=20.又X
0
=[*]满足X
0
T
X
0
=2,且X
0
T
AX
0
=[*]=2ξ
T
(Aξ) =2ξ
T
(10ξ)=20(ξ
T
ξ)=20,综上可知[*]X
T
AX=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/j5V4777K
0
考研数学二
相关试题推荐
设f(χ)在区间[0,1]上可导,f(1)=2χ2f(χ)dχ.证明:存在ξ∈(0,1),使得2f(ξ)+ξf′(ξ)=0.
设f(χ)连续,证明:∫0χ[∫0tf(u)du]dt=∫0χf(t)(χ-t)dt.
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=_______.
若函数f(χ)在[0,1]上二阶可微,且f(0)=f(1),|f〞(χ)|≤1,证明:|f′(χ)|≤在[0,1]上成立.
设f(χ)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a)(a>0),证明:存在ξ∈(-a,a),使得f′(ξ)=2ξf(ξ).
求微分方程cosy-cosχsin2y=siny的通解.
求微分方程χy〞+2y′=eχ的通解.
设f(χ)在(-∞,+∞)上有定义,χ0≠0为函数f(χ)的极大值点,则().
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(Ⅰ)求常数a,b的值;(Ⅱ)求BX=0的通解.
求I=dχdY,其中D是由抛物线y2=χ,直线χ=0,y=1所同成.
随机试题
临床上主要用作表面麻醉的是
责任保险适用范围包括()
下列行为不适用于《上市公司重大资产重组管理办法》的是()。
商业银行的重大风险事项包括()。
物业管理开标应当在招标文件确定的提交投标文件截止时间的()进行。
由于幼儿的肌肉中水分多,蛋白质及糖元少,不适合他们的运动项目是()。
警务公开制度要求各级公安机关基层单位要将()所需手续、程序、时限等印成“警民联系卡”“便民卡”或“明白卡”,或者设立电话查询服务业务,方便群众办事。
项目范围变更控制,包括(34)。
下列软件中,属于应用软件的是()。
Therearetwotypesofpeopleintheworld.Althoughtheyhaveequaldegreesofhealthandwealthandtheothercomfortsoflife
最新回复
(
0
)