首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对于任意给定的正数a,b,在(0,1)内至少存在两个不同的点ξ,η,使得 af′(ξ)+bf′(η)=a+b.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对于任意给定的正数a,b,在(0,1)内至少存在两个不同的点ξ,η,使得 af′(ξ)+bf′(η)=a+b.
admin
2021-01-30
32
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明对于任意给定的正数a,b,在(0,1)内至少存在两个不同的点ξ,η,使得
af′(ξ)+bf′(η)=a+b.
选项
答案
取[*]显然f(x)在[0,c]和[c,1]上满足拉格朗日中值定理的条件,因此至少存在ξ∈(0,c),η∈(c,1),使得 f(c)-f(0)=f′(ξ)c,f(1)一f(c)=f′(η)(1一c). 整理得 [*] 从而有 af′(ξ)+bf′(η)=a+b.
解析
转载请注明原文地址:https://kaotiyun.com/show/jHq4777K
0
考研数学一
相关试题推荐
[*]
设f(x)满足f"(x)+(1一cosx)f'(x)+xf(x)=sinx,且f(0)=2.则
A、 B、 C、 D、 D
函数f(x)=xe-2x的最大值为________.
设f(x)在[a,b]上二阶可导且f”(x)>0,证明:f(x)在(a,b)内为凹函数.
求级数的和函数.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
设y=的表达式为()。
求函数的反函数.
随机试题
根据以下资料,回答以下问题。以下年份中全国城市建成区绿化覆盖率与建成区绿地率数值相差最大的是:
压力容器按安全状况分为()个级别。
初产妇,24岁。足月临产10小时,胎位正常,胎心142次/分,宫口开大4cm,2小时后再次肛检宫口扩张无进展。护士判断该产妇发生了
胸痛的性质多种多样,如()引起的多呈烧灼感。
继发性肺结核的病理特点有()
背景A公司项目部承包了42层办公大楼的机电安装工程,工程内容包括建筑给水排水、建筑电气、通风与空调、建筑智能化、电梯等机电安装工程,合同总工期为24个月。施工中,在电线采购中,业主向A公司竭力推荐B电线生产厂的产品。A公司为了搞好和业主的关系,尽
执行下面算法,程序输出结果为:___________。注:“mod”为求模(余数)运算。
Inthekitchenofmymother’shousestherehasalwaysbeenawoodenstand(木架)withasmallnotepad(记事本)andaholeforapencil
在美国与西班牙作战期间,美国海军曾经广为散发海报,招募兵员。当时最有名的一个海军广告是这样说的:美国海军的死亡率比纽约市民还要低。海军的官员具体就这个广告解释说:“根据统计,现在纽约市民的死亡率是每千人有16人,而尽管是战时,美国海军士兵的死亡率也不过每千
ANewApproachtoDebateI.Teachers’hesitation:debateisbeyondstudents’【T1】______【T1】______II.SuggestionsfromProf
最新回复
(
0
)