首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,-4,3,a+1)T皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
admin
2019-08-23
59
问题
设A是3×4阶矩阵且r(A)=1,设(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
,(2,-4,3,a+1)
T
皆为AX=0的解.(1)求常数a; (2)求方程组AX=0的通解.
选项
答案
(1)因为r(A)=1,所以方程组AX=0的基础解系含有三个线性无关的解向量,故(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
,(2,一4,3,a+1)
T
线性相关,即[*],解得a=6. (2)因为(1,一2,1,2)
T
,(1,0,5,2)
T
,(一1,2,0,1)
T
线性无关,所以方程组AX=0的通解为X=k
1
(1,一2,1,2)
T
+k
2
(1,0,5,2)
T
+k
3
(一1,2,0,1)
T
(k
1
,k
2
,k
3
为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/zec4777K
0
考研数学一
相关试题推荐
设函数f(x,y)可微,且f(1,1)=1,fx’(1,1)=a,fy’(1,1)=b。又记φ(x)=f{x,f[x,f(x,x)]},则φ’(1)=__________。
设有一半径为R的球体,P0是此球的表面上一个定点,球体上任一点的密度与该点到P0的距离的平方成正比(比例常数k>0),求球体的质心位置。
设函数y=y(x)由参数方程确定,其中x(t)是初值问题的解。求
向量场u(x,y,z)=xy2i+yezj+xln(1+z2)k在点P(1,1,0)处的散度divu=____________。
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆。
设A,B均为n阶对称矩阵,则不正确的是()
设向量组α1=(a,0,10)T,α2=(—2,1,5)T,α3=(—1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β不可由α1,α2,α3线性表出。
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn—r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn—r线性无关。
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。
已知A、B为三阶非零矩阵,且A=。β1=(0,1,—1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求求Bx=0的通解。
随机试题
罪犯处罚审批表填写的项目与以下哪种表的填写项目相同?
患者,女,30岁。2小时前车祸左顶枕部着地,当时有约10分钟意识不清,醒后头痛,左耳流血性脑脊液,四肢活动好,病理征(-),头颅CT示左顶枕部头皮软组织肿胀。诊断是
南宋孝宗时期,吴员外仅有一个已经出嫁的女儿。吴员外死后,其妻收养过继了一男孩作继子。对于吴员外的财产的继承,下列哪个选项是正确的?()
依据《公路工程基桩检测技术规程》(JTG/T3512—2020),采用超声透射波法检测桩身完整性,关于声测管埋设数量的表述,正确的有()。
按照我国现行的税收法律、行政法规、部门规章以及延期申报的时间,延期申报的具体期限一般是一个申报期限内,最长不得超过()。
一般情况下,民间非营利组织提供服务的收入为非限定性收入,除非相关资产提供者对资产的使用设置了限制。()
根据《票据法》的规定,下列各项中,汇票背书被认定为不连续的是()。
求不定积分。
1,,()
UniversitiesBranchOutA)Asneverbeforeintheirlonghistory,universitieshavebecomeinstrumentsofnationalcompetitionas
最新回复
(
0
)