首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
自考
设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有 ( )
设α1,α2,α3,线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不可由α1,α2,α3线性表示,则对任意常数k必有 ( )
admin
2020-05-06
60
问题
设α
1
,α
2
,α
3
,线性无关,向量β
1
可由α
1
,α
2
,α
3
线性表示,而向量β
2
不可由α
1
,α
2
,α
3
线性表示,则对任意常数k必有 ( )
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
B、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
D、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
答案
D
解析
由于β
2
不可由α
1
.α
2
,α
3
线性表示,说明α
1
,α
2
,α
3
.β
2
线性无关.
设k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(kβ
1
+β
2
)=0,由已知可知β
1
=m
1
α
1
+m
2
α
2
+m
3
α
3
代入上式整理得(k
1
+k
4
m
1
k)α
1
+(k
2
+k
4
m
2
k)α
2
+(k
3
+k
4
m
3
k)α
3
+k
4
β
2
=0.
由β
2
不可由α
1
,α
2
,α
3
线性表示得k
1
+k
4
m
1
k=0,k
2
+k
4
m
2
k=0,k
3
+k
4
m
3
k=0,k
4
=0,
显然k
1
=k
2
=k
3
=k
4
=0.故选项D成立,至于B,C选项,当k=0时线性相关,当k≠0时线性无关.
转载请注明原文地址:https://kaotiyun.com/show/jKyR777K
本试题收录于:
线性代数(经管类)题库公共课分类
0
线性代数(经管类)
公共课
相关试题推荐
v_________n.植被,(总称)植物,草木
Her______(suitable)fortheposthasbeenquestioned.
Hegotalarge______(plant)ofcottonfromhisfather.
b_______vt.使迷惑,使昏乱
Shecandoawonderful______(imitate)ofabird’ssong.
______consideredthealternativesmorecarefully,theywouldhaverealizedthatthesecondwasbetterthanthefirst.
爱因斯坦在《我的世界观》一文中引用叔本华的话“人虽然能够做他所想做的,但不能要他所想要的”,要证明的论点是
谁知这个话传到宝玉黛玉二人耳内,他二人竞从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低着头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪,一个在怡红院对月长吁。正是“人居两地,情发一心”了。
冯谖的性格特征有
设则以矩阵A为对应的二次型是()
随机试题
集体合同的时间效力的表现形式有()
下列关于NHL的病理类型中,哪些属于中度恶性?
(2007年第75题)下列属于退行性变的疾病是
下列行为中,属于无效民事行为的有()。
人们常说“教学有法,教无定法”,此话反映了教师劳动的()。(2014·河南)
Wherearetheynow?
Electronicmailhasbecomeanextremelyimportantandpopularmeansofcommunication.Theconvenienceandefficiencyofelec
JudgingbythewildlycheeringaudienceattheorgyofconsumerismthatwasOprahWinfrey’s"UltimateFavouriteThings"show,A
A、Theykeepallthepropertyoftheorganization.B、Theyareresponsibleformostofthebusinessdebts.C、Theytakemorerespon
Postgraduatedilemmas[A]Decidingwhetherornottobecomeapostgraduatecanbeadaunting(令人畏缩的)prospect.Evenifyouaresure
最新回复
(
0
)