首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2015-07-10
48
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)一f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycoscrdx+sinxdy)+(一ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy一2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/jNU4777K
0
考研数学三
相关试题推荐
“十四五”时期是实现巩固拓展脱贫攻坚成果同乡村振兴有效衔接、加快农业农村现代化的关键时期。农业现代化,关键是农业科技现代化。关于我国的农业农村科技发展,下列相关说法正确的是()。
2022年中央一号文件提出的两条底线任务指的是()。
()是中国共产党人的精神支柱和政治灵魂。
新华社北京5月23日电,日前,国务院总理李克强主持召开国务院常务会议,进一步部署稳经济一揽子措施,努力推动经济回归正常轨道、确保运行在合理区间。会议决定实施6方面措施,分别是:财政及相关政策、金融政策、()、促消费和有效投资、保能源安全
全国土地会议以后,解放区广大农村迅速掀起土地制度改革运动的热潮。经过土地改革运动,到1948年秋,1亿人口的解放区消灭了封建生产关系。土地制度改革的伟大意义体现在
试求常数a和b的值,使得
设△ABC为等腰三角形,∠B=∠C,∠B的平分线与对边AC交于点P,则由平面几何知道,AP/PC=BA/BC,现假定底边BC保持不动,而让等腰三角形的高趋于零,此时点A就趋于底边BC的中点,试求这一变化过程中点P的极限位置.
设φ(x)=∫sinxcos2xln(1+t)dt,求φ’(x).
设F(x)为f(x)的原函数,且当x≥0时,f(x)F(x)=,又F(0)=1,F(x)>0,求f(x).
设f(u)具有连续的一阶导数,且当x>0,y>0时,z=满足.求z的表达式.求出A的全部特征值和特征向量,并证明A不可对角化.
随机试题
目前认为,一般经口摄入毒物几小时之内仍应洗胃()
下列行为属于侵犯软件著作权的是:()
综合布线系统的优越性有()。
【2010年真题】根据《招标投标法》,下列关于投标和开标的说法中,正确的是()。
已知复数z=+lg(a2+4a+5)i(a∈R),求是否存在实数a使复数z为实数,如果存在,求出该实数;如果不存在,请说明理由.
我国中小学的德育内容包括()。
人的全面发展和个性发展是矛盾的。
关于刑法的基本原则,下列说法正确的是()
Nooneknowshowmanlearnedtomakewords.Perhapshebeganbymakingsoundslikethosemadebyanimals.Perhapshegruntedlik
IfyourchildisaskingforUggbootsorapriceyhottoyfortheholidays,it’stimeforateachablemoment.Evenifyourkidh
最新回复
(
0
)