首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x2y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
admin
2015-07-10
60
问题
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,求f(x)及该全微分方程的通解.
选项
答案
令P(x,y)=xy(x+y)一f(x)y,Q(x,y)=f’(x)+x
2
y,因为[xy(x+y)一f(x)y]dx+[f’(x)+x
2
y]dy=0为全微分方程,所以[*],即f"(x)+f(x)=x
2
, 解得f(x)=C
1
cosx+C
2
sinx+x
2
一2,由f(0)=0,f’(0)=1得C
1
=2,C
2
=1, 所以f(x)=2cosx+sinx+x
2
一2. 原方程为[xy
2
一(2cosx+sinx)y+2y]dx+(一2sinx+cosx+2x+x
2
y)dy=0,整理得 (xy
2
dx+x
2
ydy)+2(ydx+xdy)一2(ycoscrdx+sinxdy)+(一ysinxdx+cosxdy)=0, 即d([*]x
2
y
2
+2xy一2ysinx+ycosx)=0, 原方程的通解为[*]x
2
y
2
+2xy一2ysinx+ycosx=C.
解析
转载请注明原文地址:https://kaotiyun.com/show/jNU4777K
0
考研数学三
相关试题推荐
2022年1月16日,第2期《求是》杂志发表习近平总书记重要文章《不断做强做优做大我国数字经济》。文章指出,发展数字经济是把握新一轮科技革命和产业变革新机遇的战略选择。数字经济健康发展,有利于()。
2022年6月22日10时8分,我国在酒泉卫星发射中心使用快舟一号甲运载火箭,成功将()试验卫星发射升空。卫星顺利进入预定轨道,发射任务获得圆满成功。
实践证明,坚持和加强党的全面领导,是党和国家的根本所在、命脉所在,是全国各族人民的利益所在、幸福所在,是战胜一切困难和风险的“()”。
国务院总理李克强2022年4月20日主持召开国务院常务会议。会议指出。()同是保持经济运行在合理区间的主要支撑。稳定粮食等重要农产品生产供应,对保持经济社会大局稳定特别是稳定物价、保障民生具有()作用,在当前国际粮食
在农业的社会主义改造过程中,具有半社会主义性质的组织形式是
在晋西北地区,山西省右玉县精心做好绿色发展大文章。林木覆盖率从0.3%增长到54%,从“不毛之地”到“沙漠绿洲”,从种不上庄稼、吃不上饭到享受“生态红利”……山西省右玉县时刻践行“两山”理论,将期望中的“金山银山”变为了现实。这一事例体现了实践具有
人类每天都在产生垃圾,垃圾总量一天比一天多,由此带来的问题非常棘手。不产生垃圾是不可能的。既然如此,那就退而求其次,倡导大家减少垃圾。然而,减到多少才是少?这里并没有一个标准。而且从总体上看,生产和消费必然产生垃圾,减少垃圾很可能抑制生产和消费。接着往后退
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
设f(u)具有连续的一阶导数,且当x>0,y>0时,z=满足.求z的表达式.证明考ξ1,ξ2,…,ξn线性无关;
随机试题
《葡萄酒》(GB15037-2006)中规定,葡萄酒中的挥发酸含量应小于或等于1.2g/L。
在用万能分度头进行差动分度时,选定的假定等分数可大于也可小于实际等分数。()
病室最适宜的温度和湿度是
患者,男,25岁,因急性阑尾炎急诊入院,最典型的症状为()
甲厂发运一批玻璃器皿,以印有“美美牌化妆品”的纸箱包装,在运输过程中,由于装卸工未轻拿轻放而损坏若干件,该损失应由下列哪个或哪些部门承担?()
对于二级处理水中去除悬浮状态的氮盐时,采用的主要技术不包括()。
在产品形成过程中,产品质量主要受()等因素的影响。
下列各句中没有语病的是()。
商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯级有:
简述担保物权的特征。
最新回复
(
0
)