首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22。
admin
2018-02-07
113
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
。
选项
答案
设A=2αα
T
+ββ
T
,由于|α|=1,α
T
β=β
T
α=0,则 Aα=(2αα
T
+ββ
T
)α =2α|α|
2
+ββ
T
α=2α, 所以α为矩阵对应特征值λ
i
=2的特征向量; Aβ=(2αα
T
+ββ
T
)β =2αα
T
β+β|β|
2
=β, 所以β为矩阵对应特征值λ
2
=1的特征向量。 而矩阵A的秩 r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)=2, 所以λ
3
=0也是矩阵的一个特征值。故f在正交变换下的标准形为2y
1
2
+y
2
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/jTk4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,取正值且单调减少,证明
证明下列函数在(-∞,+∞)内是连续函数:(1)y=3x2+1(2)y=cosx
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
随机试题
Amtrak—thelargestrailwaycompanyintheU.S.—wasexperiencingadeclininginrider-ship.【C1】________majorconcernstoAmtraka
“使儿童从社会因袭的束缚与压抑下解放出来,回归人的自然状态,遵循人的自然倾向,使儿童自由成长”属于下列哪一理论的观点()
Thenewsreportershurriedtotheairport,only______thefilmstarshadleft.
,临床婴幼儿最常见的贫血类型是
肺炎气阴两伤余热未尽型宜选用方肺炎痰热壅肺型宜选用方
管理是由多个环节组成的有限的循环过程,包括()。
下列建设项目信息中,属于经济类信息的是()。
建设工程施工验收阶段,参加验收工作的单位由()组成。
Britishuniversities,groaningundertheburdenofahugeincreaseinstudentnumbers,arewarningthatthetraditionofafree
AUNreportsaysthatoverhalftheworld’speoplenowliveincities.A(1)______ago,lessthanfivepercentofallpeoplelived
最新回复
(
0
)