首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
admin
2016-05-03
58
问题
设α
1
=(1,一2,1,0,0)
T
,α
2
=(3,一6,2,1,0)
T
,α
3
=(5,一6,0,0,1)
T
,α
4
=(1,一2,0,1,0)
T
都是齐次线性方程组
∑a
ij
x
j
=0,i=1,2,3,4 (*)
的解向量,且(*)的任一解向量可以由α
1
,α
2
,α
3
,α
4
线性表出,则方程组的通解为_________.
选项
答案
k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
),其中k
1
,k
2
,k
3
为任意常数
解析
方程组(*)的基础解系是α
1
,α
2
,α
3
,α
4
的极大线性无关组,其通解为α
1
,α
2
,α
3
,α
4
的极大线性无关组的全部线性组合.
对(α
1
,α
2
,α
3
,α
4
)作初等行变换,
可知α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)是α
1
,α
2
,α
3
,α
4
的极大线性无关组.
故(*)的通解为k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
).
转载请注明原文地址:https://kaotiyun.com/show/jmT4777K
0
考研数学三
相关试题推荐
毛泽东强调,关于正确处理人民内部矛盾的问题是社会主义国家政治生活的主题。这一论断的根本着眼点在于()。
“可能有这样一些共产党人,他们是不曾被拿枪的敌人征服过的,他们在这些敌人面前不愧英雄的称号;但是经不起人们用糖衣裹着炮弹的攻击,他们在糖衣炮弹面前要打败仗。我们必须预防这种情况”毛泽东提出这一警告是在()。
设A与B均为n,阶矩阵,且A与B合同,则().
设函数z=f(x,-y)在点P(x,y)处可微,从x轴正向到向量l的转角为θ,从x轴的正向到向量m的转角为θ+π/2,求证:
下列各函数均为x→0时为无穷小,若取x为基本无穷小,求每个函数的阶:
求下列齐次型方程的通解:(1)xyˊ=y(1ny-lnx);;(3)xyˊ=xey/x+y;(4)(x+y)yˊ=x-y;(5)(x2+y2)dx-xydy=0;(6)(x+ycosy/x)dx-xcosy/xdy=0.
求下列向量场A沿定向闭曲线Γ的环流量:(1)A=-yi+xj+ck(c为常数),Γ为圆周x2+y2=1,z=0,从z轴正向看去,Γ取逆时针方向;(2)A=3yi-xzj+yz2k,Γ为圆周x2+y2=4,z=1,从z轴正向看去,Γ取逆时针方向.
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设判断f(x)在(一∞,1]是否有界,并说明理由.
设对一切的x,有f(x+1)=2f(x),且当x∈[0,1]时f(x)=x(x2一1),讨论函数f(x)在x=0处的可导性.
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)