首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
admin
2016-05-03
74
问题
设α
1
=(1,一2,1,0,0)
T
,α
2
=(3,一6,2,1,0)
T
,α
3
=(5,一6,0,0,1)
T
,α
4
=(1,一2,0,1,0)
T
都是齐次线性方程组
∑a
ij
x
j
=0,i=1,2,3,4 (*)
的解向量,且(*)的任一解向量可以由α
1
,α
2
,α
3
,α
4
线性表出,则方程组的通解为_________.
选项
答案
k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
),其中k
1
,k
2
,k
3
为任意常数
解析
方程组(*)的基础解系是α
1
,α
2
,α
3
,α
4
的极大线性无关组,其通解为α
1
,α
2
,α
3
,α
4
的极大线性无关组的全部线性组合.
对(α
1
,α
2
,α
3
,α
4
)作初等行变换,
可知α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)是α
1
,α
2
,α
3
,α
4
的极大线性无关组.
故(*)的通解为k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
).
转载请注明原文地址:https://kaotiyun.com/show/jmT4777K
0
考研数学三
相关试题推荐
早期研究、传播马克思主义思想运动的特点有()。
毛泽东在《关于正确处理人民内部矛盾的问题》中认为中国工人阶级同民族资产阶级的矛盾属于()。
材料1 近日,美国航天局等机构研究人员在新一期英国《自然·可持续发展》杂志发表论文说,他们在分析了美国航天局“特拉”号卫星和“阿卡”号卫星的观测数据后发现,全球从2000年到2017年新增的绿化面积中,25%以上来自中国,中国对全球绿化增量的贡献比居全
新民主主义革命的总路线和总政策的核心是()。
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
求下列均匀薄片或均匀物体对指定直线的转动惯量:(1)边长为a与b的矩形薄片对两条边的转动惯量;(2)轴长为2a与2b的椭圆形薄片对两条轴的转动惯量;(3)半径为a的球体对过球心的直线及对与球体相切的直线的转动惯量;(4)半径为a,高为h的圆柱体对过
随机试题
自动变速器换档冲击大如何处理?
在借贷记账法下,所有者权益类账户的结构是()。
长夏季节,饮食不洁,遂见腹痛,腹泻,日十余次,呕恶不欲食,发热,微恶寒,脉数,治疗宜选用
新生儿出生时呼吸频率约为
下列不属于应收账款转让筹资优点的有()
精彩的描写能最大限度地把景物的内涵充分地揭示出来,以达到。“如见其人,如闻其声,如临其境”的境界。因此导游词要写得()。
马克思为第一国际起草的文件有()。①《共产党宣言》②《临时章程》③《成立宣言》④《资本论》
诸老废笃疾,事须争诉,止令同居亲属深知本末者代之。若谋反大逆,子孙不孝,为同居所侵侮,必须自陈者听。诸致仕得代官,不得已与齐民讼,许其亲属家人代诉,所司毋侵扰之。诸妇人辄代男子告辨争讼者,禁之。若果寡居,及虽有子男,为他故所妨,事须争讼
Whatisthemainpurposeofthemessage?
ThefirstflightoftheSpaceShuttleColumbiainthespringof1981wasarevolutionarydevelopmentinspace【B1】______.Un
最新回复
(
0
)