首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
设α1=(1,一2,1,0,0)T,α2=(3,一6,2,1,0)T,α3=(5,一6,0,0,1)T,α4=(1,一2,0,1,0)T都是齐次线性方程组 ∑aijxj=0,i=1,2,3,4 (*) 的解向量,且(*)的任一解向量可
admin
2016-05-03
41
问题
设α
1
=(1,一2,1,0,0)
T
,α
2
=(3,一6,2,1,0)
T
,α
3
=(5,一6,0,0,1)
T
,α
4
=(1,一2,0,1,0)
T
都是齐次线性方程组
∑a
ij
x
j
=0,i=1,2,3,4 (*)
的解向量,且(*)的任一解向量可以由α
1
,α
2
,α
3
,α
4
线性表出,则方程组的通解为_________.
选项
答案
k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
),其中k
1
,k
2
,k
3
为任意常数
解析
方程组(*)的基础解系是α
1
,α
2
,α
3
,α
4
的极大线性无关组,其通解为α
1
,α
2
,α
3
,α
4
的极大线性无关组的全部线性组合.
对(α
1
,α
2
,α
3
,α
4
)作初等行变换,
可知α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)是α
1
,α
2
,α
3
,α
4
的极大线性无关组.
故(*)的通解为k
1
α
1
+k
2
α
2
+k
3
α
3
(或k
1
α
1
+k
2
α
3
+k
3
α
4
).
转载请注明原文地址:https://kaotiyun.com/show/jmT4777K
0
考研数学三
相关试题推荐
苹果公司不顾美国政府的反对,决定将位于美国的新款MacPro生产线移往中国。苹果公司发言人说:“和我们所有的产品一样,新款MacPo也是在加州设计的,零部件来自包括美国在内的多个国家,最终组装只是生产过程的一部分。”这表明()。
最能完整地体现五四运动性质的口号是()。
人的活动具有目的性和自觉性,这是人与其他动物的一个很重要的区别。人生目的是指生活在一定历史条件下的人,对“人为什么活着”这一人生根本问题的认识和回答,是人在人生实践中关于自身行为的根本指向和人生追求。人生目的在人生实践中具有的作用是()
毛泽东在《中国的红色政权为什么能够存在?》一文中曾详尽地讲述了中国红色政权发生和存在的五点原因,红军第五次反“围剿”的失败充分证明了()。
设有直线,则L1与L2的夹角为().
求:微分方程y〞+y=-2x的通解.
差分方程yx+1-3yx=7.2x的通解为_______.
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
设f(x)=f(x一π)+sinx,且当x∈[0,π]时,f(x)=x,求∫π3πf(x)dx.
随机试题
不含有糖苷结构的药物是
下列关于房地产投资信托基金(REITs)特征的表达,不正确的是()。
【2012年第4题】题1~5:某城市拟在市中心建一座400m高集商业、办公、酒店为一体的标志性建筑,当地的海拔高度2000m,主电源采用35kV高压电缆进户供电,建筑物内设35/10kV及10/0.4kV变电所,高压与低压电气装置公用接地网,请回答下列问题
综合分析是将汇总整理的资料及有关数值,填入统计表或绘制统计图,使大量的零星资料(),是统计工作的结果。
下列属于有机材料的是()。
根据我国《专利法》,发明专利期限的起始日是()。
①红队5号主罚点球②广播:“黄队1比0领先”③观众狂呼喊好④守门员把球开过中场⑤有人跃起头球攻门
世间的万事万物,之所以能不停地运动、发展、前进,一个重要原因就在于保持了平衡。有一个说法,讲人的一生吃进去的食物总量约60吨,如果吃得太好、太多、太快了,把一生的食物提前吃完,生命也就提前终结了。这个说法未必准确,但其提供的视角值得深思。现实中,我们常见一
《吠陀》共四部,其中最重要、最古老、最具文学价值的是()。
Themainsubjectofthetalklasttimewas______ofearlyagriculture-basedsociety.
最新回复
(
0
)