首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
设α1 ,α2 ,α3 ,α4为四维非零列向量,A=[α1 ,α2 ,α3 ,α4],A*为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]T ,则方程组A*X=0的基础解系为( ).
admin
2016-12-16
91
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量,A=[α
1
,α
2
,α
3
,α
4
],A
*
为A的伴随矩阵,又知方程组AX=0的基础解系为[1,0,2,0]
T
,则方程组A
*
X=0的基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
C、α
2
,α
3
,α
4
D、α
1
+α
2
,α
2
+α
3
α
3
+α
4
,α
4
+α
1
答案
C
解析
由AX=0的基础解系所含解向量个数为1知,
n一r(A)=4一r(A)=1,故r(A)=3.
因而可确定r(A
*
)=1,于是A
*
X=0的一个基础解系含3个解向量.
由AX=0的基础解系仅含有一个解向量知,r(A)=3,从而r(A
*
)=1,于是方程组
A
*
X=0的基础解系中仅含3个解向量.
又 A
*
A=A
*
[α
1
,α
2
,α
3
,α
4
]=|A|E=0,
所以向量α
1
,α
2
,α
3
,α
4
是方程组A
*
X=0的解,因为[1,0,2,0]
T
是AX=0的解,故有α
1
+2α
3
=0,即α
1
,α
3
线性相关,从而向量组α
1
,α
2
,α
3
和向量组α
1
,α
2
,α
3
,α
4
均线性相关,故排除(A)、(B)、(D).又因r(A)=r(α
1
,α
2
,α
3
,α
4
)=3,故α
2
,α
3
,α
4
线性无关、仅(C)入选,
由解一知,α
1
,α
2
,α
3
,α
4
均为A
*
X=0的解向量,且其基础解系只含3个解向量.
由α
1
+2α
3
=0得
α
1
=0α
2
一2α
3
+0α
4
,
即α
1
可由α
2
,α
3
,α
4
线性表示,又
r(α
1
,α
2
,α
3
,α
4
)=3,
所以α
2
,α
3
,α
4
线性无关,即α
2
,α
3
,α
4
为A
*
X=0的一个基础解系,仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/jnH4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
一男子到闹市区去,他遇到背后袭击并被抢劫,他断言凶手是个白人,然而当调查这一案件的法院在可比较的光照条件下多次重复展现现场情况时,受害者正确识别袭击者种族的次数约占80%,袭击者确实是白人的概率是0.8吗?试给出说明.
设n阶矩阵A的元素全为1,则A的n个特征值是________.
A是n阶矩阵,且A3=0,则().
设f(x)在[0,1]上二阶可导且f〞(x)<0,证明:
由题设,先求曲线在点(0,1)处的切线的斜率,由已知x=0,y=1时,t=0,
设f(x)的导数在x=a处连续,又则().
利用定积分计算下列极限:
设f(t)(t≥0)为连续函数,则由下式确定的函数F称为f的拉普拉斯变换:其中F的定义域为所有使积分收敛的s的值的集合,试求出下列函数的拉普拉斯变换:(1)f(t)=1;(2)f(t)=el;(3)f(t)=t.
将10双不同的鞋随意分成10堆,每堆2只,以X表示10堆中恰好配成一双鞋的堆数,则EX=______.
随机试题
经济法律关系有哪些方面的特征?
了解和研究学生包括【】
马斯洛将人的基本需要分为五个层次,由低到高依次为
一般情况下固定桥最理想的固位体是
明朝终世不改的根本大法是()。
“啤酒”属于哪种外来词?()(北京师范大学2015)
在TCP/IP协议分层结构中,SNMP是在传输层协议之上的(58)请求/响应协议;SNMP协议管理操作中,代理主动向管理进程报告事件的操作是(59)。(59)
为了提高测试的效率,应该()。
Whatkindofjobsareneeded?AccordingtotheadvertisementwhichofthefollowingisNOTTRUE?
A、Beautifulflowersintheforest.B、Brightcolorsandcutecharacters.C、Interestingadventuresinthewood.D、Themagicworld
最新回复
(
0
)