首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
admin
2017-02-28
27
问题
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫
a
b
f(x)dx>0,证明:
(Ⅰ)存在ξ∈(a,b),使得∫
a
ξ
f(x)dx=0;
(Ⅱ)存在η∈(a,b),使得∫
a
η
f(x)dx=f(η).
选项
答案
(Ⅰ)由积分中值定理,∫
a
b
f(x)dx=f(c)(b一a)>0,其中c∈[a,b], 显然f(c)>0且c∈(a,b]. 因为f(a)f(c)<0,所以由零点定理,存在x
0
∈(a,c),使得f(x
0
)=0. 再由f(x)单调增加得,当x∈[a,x
0
)时,f(x)<0;当x∈(x
0
,b]时,f(x)>0. 令F(x)=∫
a
x
f(t)dt,显然F(x
0
)<0,F(b)>0,由零点定理,存在ξ∈(a,b),使得F(ξ)=0,即∫
a
ξ
f(x)dx=0. (Ⅱ)令φ(x)=e
x
∫
a
x
f(t)dt,φ(a)=φ(ξ)=0, 由罗尔定理,存在η∈(a,ξ)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
—x
[f(x)一∫
a
x
f(t)dt]且e
—x
≠0,故∫
a
η
f(x)dx=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/jtu4777K
0
考研数学一
相关试题推荐
[*]
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
函数u=x2-2yz在点(1,-2,2)处的方向导数量大值为______.
由题设,引入辅助函数,即g(x)=ex,则f(x)与g(x)在区间[a,b]上满足柯西中值定理的条件,所以知存在一点η∈(a,b),使得[*]
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(Ⅰ)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ
(2007年试题,1)当x→0时,与等价的无穷小量是().
设由e-y+x(y一x)=1+x确定y=y(x),则y”(0)=______.
随机试题
水肿以头面、眼睑先肿者,应诊断为
为使固定桥充分发挥咀嚼功能,首要的是
阀门与管道以焊接方式连接时,阀门应(),焊缝底层宜采用氩弧焊。
从事生产、经营的纳税人、扣缴义务人未按照规定的期限缴纳或者解缴税款,纳税担保人未按照规定的期限缴纳所担保的税款,由税务机关责令限期缴纳,逾期仍未缴纳的,经县级以上税务局(分局)局长批准,税务机关可以采取的措施是()。
不良贷款指的是()。
根据下列资料回答题。2005年我国全社会固定资产投资88604亿元,比上年增长25.7%。其中,城镇投资75096亿元,增长27.2%;农村投资13508亿元,增长18.0%。在城镇投资中,第一产业投资823亿元,增长27.5%;第二产业投资31598亿
(2004年单选2)在下列犯罪构成的一般要件中,揭示犯罪实质特征的要件是()。
简述罪责刑相适应原则的基本内容和体现。
TherecentsocialandeconomicchangesintheU.S.havegreatimpactonalltheAmericanhousingsystem.
Howwelookandhowweappeartoothersprobablyworriesusmorewhenweareinourteensorearlytwentiesthanatanytime
最新回复
(
0
)