首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫abf(x)dx>0,证明: (Ⅰ)存在ξ∈(a,b),使得∫aξf(x)dx=0; (Ⅱ)存在η∈(a,b),使得∫aηf(x)dx=f(η).
admin
2017-02-28
56
问题
设f(x)∈c[a,b]且f(x)为单调增函数,若f(a)<0,∫
a
b
f(x)dx>0,证明:
(Ⅰ)存在ξ∈(a,b),使得∫
a
ξ
f(x)dx=0;
(Ⅱ)存在η∈(a,b),使得∫
a
η
f(x)dx=f(η).
选项
答案
(Ⅰ)由积分中值定理,∫
a
b
f(x)dx=f(c)(b一a)>0,其中c∈[a,b], 显然f(c)>0且c∈(a,b]. 因为f(a)f(c)<0,所以由零点定理,存在x
0
∈(a,c),使得f(x
0
)=0. 再由f(x)单调增加得,当x∈[a,x
0
)时,f(x)<0;当x∈(x
0
,b]时,f(x)>0. 令F(x)=∫
a
x
f(t)dt,显然F(x
0
)<0,F(b)>0,由零点定理,存在ξ∈(a,b),使得F(ξ)=0,即∫
a
ξ
f(x)dx=0. (Ⅱ)令φ(x)=e
x
∫
a
x
f(t)dt,φ(a)=φ(ξ)=0, 由罗尔定理,存在η∈(a,ξ)[*](a,b),使得φ’(η)=0, 而φ’(x)=e
—x
[f(x)一∫
a
x
f(t)dt]且e
—x
≠0,故∫
a
η
f(x)dx=f(η).
解析
转载请注明原文地址:https://kaotiyun.com/show/jtu4777K
0
考研数学一
相关试题推荐
[*]
由Y=lgx的图形作下列函数的图形:
已知函数y=y(x)由方程ey+6xy+x2-1=0确定,则y"(0)=_________.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过Ⅱ表示为b2=________.
因为二次型xTAx经正交变换化为标准形时,标准形中平方项的系数就是二次型矩阵A的特征值,所以6,0,0是A的特征值,又因为∑aij=∑λi,所以a+a+a=b+0+0→a=2.
求不定积分
(2003年试题,一)曲面z=x2+y2与平面2x+4y一z=0平行的切平面的方程是________________。
设φ1(x),φ2(x),φ3(x)是微分方程y"+P(x)y’+Q(x)y=f(x)的三个线性无关的特解,则该方程的通解为().
设f(x)=∫0sinxsint2dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的().
随机试题
人员招聘常见的基本方法主要是()
国际规定冷水机组冷水出水温度为()。
公式“=YEAR(“2015—5—14”)”的值为【】
Whydon’tyoubring______hisattentionthatyou’retooilltogoonworking?
超声造影回声强度减低的原因是
男性,40岁。因单位效益差而下岗在家,三个月后出现头疼、失眠、情绪低落、思维迟缓,责怪自己能力低,内疚,自觉连累了家人,曾有自伤行为。体检及神经系统检查未发现阳性体征。该患者诊断为抑郁症,下列哪种治疗方法不正确
作为产品质量法调整对象的产品必须具备下列哪些要素?( )
按矿料最大粒径分类,沥青混凝土主要有:粗粒式、( )、砂砾式、细粒式等四大类。
名片效应指在交际中,若要让对方接受你的观点、态度,就要把对方与自己视为一体,首先向交际对方传播一些他们所能接受的和熟悉并喜欢的观点或思想,然后再悄悄地将自己的观点和思想渗透和组织进去,使对方产生一种印象,似乎我们的思想观点与他们已认可的思想观点是相近的。表
Itis【C1】______spring,andallofusarethankfultoseetreesbloomingandbirds【C2】______tonestagain.Justaboutallof
最新回复
(
0
)