首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
[2013年] 设二次型 f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2, 记 若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
admin
2021-01-19
94
问题
[2013年] 设二次型
f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
3x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,
记
若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
因α,β为单位向量且相互正交,有 β
T
α=α
T
β=0,∣∣α∣∣=[*]=1,∣∣β∣∣=[*]=1, 故α
T
α=1,,β
T
β=1,因而 Aα=(2αα
T
+ββ
T
)α=2α(α
T
α)+β(β
T
α)=2α∣∣α∣∣+β(β
T
α)=2α·1+β·0=2α 即α为A的属于特征值λ
1
=2的特征向量. Aβ=(2αα
T
+ββ
T
)β=2α(α
T
β)+β(β
T
β)=2α·0+β·1=β, 即β为A的属于特征值λ
2
=1的特征向量. 又秩(A)=秩(2αα
T
+ββ
T
)≤秩(2αα
T
)+秩(ββ
T
)≤秩(α)+秩(β)=1+1=2<3, 则A的第三个特征值为λ
3
=0.故f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/jv84777K
0
考研数学二
相关试题推荐
设三阶矩阵A,B满足关系A-1BA=6A+BA,且A=,则B=_________
已知矩阵有两个线性无关的特征向量,则a=______。
二次型f(x1,x2,x3)=xTAx=2x22+2x32+4x1x2+8x2x3—4x1x3的规范形是__________。
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=_______.
设A=,A*为A的伴随矩阵,则(A*)-1=_________。
若向量组α1=(1,一1,2,4)T,α2=(0,3,1,2)T,α4=(3,0,7,a)T,α4=(1,一2,2,0)T线性无关,则未知数a的取值范围是__________.
设A=有三个线性无关的特征向量,则a=_________.
没A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2分别是A的对应于λ1,λ2的特征向量,证明ξ1+ξ2不是A的特征向量.
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
随机试题
舒张早期奔马律与生理性第三心音的区别不包括
既能祛风湿,又能退虚热的药物是
患者,男性,68岁,左股外侧疖肿2天,医嘱局部热敷。有关用氧注意事项错误的是()。
适用于融资租赁交易的融资物包括()。
背景资料: 建设单位就某工程项目与甲施工单位签订了施工总承包合同。经建设单位同意,甲施工单位选择了乙施工单位作为分包单位。在合同履行中,发生了如下事件: 事件一:在合同约定的工程开工日前,建设单位收到甲施工单位报送的“工程开工报审表”后即予处理。考虑到
【2014年山东省属.单选】教学是教儿童,不是单纯教教材,要展开真正的学习,儿童必须参与教学过程。有意义的学习只有在教材同学生自身的目的发生关系,由学生去认知时.才能产生。持这一主张的是()。
我国对个体农业实行社会主义改造所遵循的原则是()。
2015年年末,全国参加基本养老保险人数为85833万人,比上年年末增加1601万人。全年基本养老保险基金收入32195亿元,比上年增长16.6%。全年基本养老保险基金支出27929亿元,比上年增长19.7%。全国增加城镇职工基本养老保险人数为35361万
有以下程序(字母A的ASCII码值是65):#include<stdio.h>voidfun(char*s){while(*s){if(*s%2)printf("%c",*s);s++:}}main(){chara[]="BYTE
Thecommandersaidtohistroopsthatundernocircumstances______tostepacrosstheborder.
最新回复
(
0
)