首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
admin
2018-01-30
57
问题
设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f
’
(0)=g
’
(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是( )。
选项
A、f
’’
(0)<0,g
’’
(0)>0。
B、f
’’
(0)<0,g
’’
(0)<0。
C、f
’’
(0)>0,g
’’
(0)>0。
D、f
’’
(0)>0,g
’’
(0)<0。
答案
A
解析
由z=f(x)g(y),得
而且
=f(0)g
’
(0)=0,f(0)>0,g(0)<0,当f
’’
(0)<0,g
’’
(0)>0时,B
2
一AC<0,且A>0,此时z=f(x)g(y)在点(0,0)处取得极小值。因此正确选项为A。
转载请注明原文地址:https://kaotiyun.com/show/kUk4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
求下列各微分方程的通解(1)2y〞+yˊ-y=2ex;(2)y〞+a2y=ex;(3)2y〞+5yˊ=5x2-2x-1;(4)y〞+3yˊ+2y=3xe-x;(5)y〞-2yˊ+5y=exsin2x;(6)y〞-6yˊ+9y=
当x→0时,(1-ax2)1/4-1与xsinx是等价无穷小,则z=_________.
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
求微分方程yy"+y’2=0满足初始条件y(1)=y’(1)=1的特解。
求极限
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
(2009年试题,23)设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(I)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
设试求:函数f(a)的定义域;
随机试题
开窍剂多制成丸散,临床正确的使用方法是
某市一卷烟生产企业(甲企业)为增值税一般纳税人,2011年8月有关经营情况如下:(1)甲企业向农业生产者收购烟叶一批,收购凭证上注明的价款800万元,并向烟叶生产者支付了国家规定的价外补贴;支付运输费用10万元,取得运输公司开具的运输发票,烟叶当期验收入
一种疾病的病死率为
胃寒呕吐,其特点是
曲线x=t2-1,y=t+1,z=t3在点(0,2,1)处的切线方程为()。
某小区已建有A大型超市,为满足需要,某市人民政府拟在该小区内再建一所超市。甲公司和乙公司先后向某市人民政府提出申请,甲公司获批准。下列哪一种说法是正确的?()
(2006年试题,一)曲线的水平渐近线方程为_________.
【B1】【B2】
Accordingtothenews,theplanecrashed______
ANiceCupofTeaTheLegendaryOriginsofTeaA)ThestoryofteabeganinancientChinaover5,000yearsago.Accordingto
最新回复
(
0
)