首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型 f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0) 中二次型的矩阵A的特征值之和为1,特征值之积为一12. (1)求a,b的值. (2)利用正交变换将二次型f化为标准形,并写出所用
设二次型 f(x1,x2,x3)=XTAX=ax12+2x22—2x32+2x1x3(b>0) 中二次型的矩阵A的特征值之和为1,特征值之积为一12. (1)求a,b的值. (2)利用正交变换将二次型f化为标准形,并写出所用
admin
2017-07-26
45
问题
设二次型
f(x
1
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
—2x
3
2
+2x
1
x
3
(b>0)
中二次型的矩阵A的特征值之和为1,特征值之积为一12.
(1)求a,b的值.
(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
(1)二次型f的矩阵为 [*] 设A的特征值为λ
i
(i=1,2,3). 由题设, λ
1
+λ
2
+λ
3
=a+2+(一2)=1, λ
1
.λ
2
.λ
3
=[*]=—4a—2b2=—12. 得a=1,b=一2. (2)由矩阵A的特征多项式 |λE一A|=[*]=(λ一2)
2
(λ+3), 得A的特征值λ
1
=λ
2
—2,λ
3
=一3. 对于λ
1
=λ
2
=2,解齐次线性方程组(2E—A)x=0,得其基础解系 ξ
1
=(2,0,1)
T
,ξ
2
=(0,1,0)
T
. 对于λ
3
=一3,解齐次线性方程组(一3E—A)x=0,得其基础解系 ξ
3
=(1,0,一2)
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,为了得到规范正交向量组,只需将ξ
1
,ξ
2
,ξ
3
单位化,由此得 [*] 则Q为正交矩阵.在正交变换X=QY下,有 Q
T
AQ=[*] 且二次型的标准形为 f=2y
1
2
+2y
2
2
—3y
3
2
设A的特征值为λ
1
,λ
2
,λ
3
,则λ
1
=2,λ
2
+λ
3
=a一2,λ
2
λ
3
=一(2a+b
2
).由题设得 λ
1
+λ
2
+λ
3
=2+(a一2)=1, λ
1
λ
2
λ
3
=一2(2a+b
2
)=一12. 得a=1,b=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/kgH4777K
0
考研数学三
相关试题推荐
1
2
A、 B、 C、 D、 A
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
已知边长为x=6m与y=8m的矩形,当-z边增加5cmI而y边减少10cm时,求这个矩形的对角线的长度变化的近似值.
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
随机试题
根据《残疾人保障法》的有关规定,下列关于残疾人无障碍环境建设的说法,正确的有()。
A.X线摄片B.MRI检查C.临床检查D.CT检查E.B超检查颅盖线形骨折的诊断主要依靠
A.附子理中丸与四神丸B.香砂六君子与乌鸡白凤丸C.心通口服液与通宣理肺丸D.复方丹参滴丸与速效救心丸E.苏合香丸与利胆排石片隐含有“十八反”的中成药药组是
承担产品侵权责任的条件包括()。
少数几家生产厂商或服务商控制整个市场的生产和销售的市场组织是()。
操作系统的作用是负责诊断机器的故障。()
进口汽车入境时,除了提供一般贸易单证以外,还须提供( )方可受理报检。
船舶上用的煤油灯
设可导函数x=x(t)由方程所确定,其中可导函数f(u)>0,且f(0)=f’(0)=1,则x’’(0)=()。
在SQL查询中,使用WHILE子句指出的是()。
最新回复
(
0
)