首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)=∫01|x2-t|dt,则f(x)在[0,1]上的最大值和最小值分别为( )。
设函数f(x)=∫01|x2-t|dt,则f(x)在[0,1]上的最大值和最小值分别为( )。
admin
2021-07-15
26
问题
设函数f(x)=∫
0
1
|x
2
-t|dt,则f(x)在[0,1]上的最大值和最小值分别为( )。
选项
A、
B、
C、
D、
答案
C
解析
f(x)=∫
0
1
|x
2
-t|dt=
(x
2
-t)dt+
(t-x
2
)dt=x
4
-x
2
+
令f’(x)=4x
3
-2x=2x(2x
2
-1)=0,解得(0,1)内唯一的驻点x=
因为f(0)=f(1)=
,所以f(x)在[0,1]上的最大值和最小值分别为
.
转载请注明原文地址:https://kaotiyun.com/show/khy4777K
0
考研数学二
相关试题推荐
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
齐次线性方程组Ax=0的系数矩阵A4×5=(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→,则()
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,设若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y22+y22
设f(x)=(x一a)(x一b)(x—c)(x一d),其中a,b,c,d互不相等,且f’(k)=(k一a)(k一b)(k一c),则k的值等于()
设A为n阶可逆矩阵,A*是A的伴随矩阵,则
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
随机试题
有次跟朋友聊天,聊到学生问题层出不穷时,我感叹道:“班主任每天就像消防员一样到处救火,费时费力还不见效,这样的日子何时才是个头啊。”朋友真诚地跟我说:“你换一个角度来看学生问题,或许问题就不是问题,而是你跟问题的关系了。问题产生了,成了既定事实,无论你是骂
沙门氏菌的形态特征是革兰氏阳性杆菌,无芽孢,无荚膜,多数有动力,周生鞭毛。
糖尿病患者为什么多尿?
混凝土抗冻等级是按()龄期的试件用快冻试验方法测定的。
李某为客户提供一项工程设计,客户按照合同规定向李某支付工程设计费60000元。客户应代扣代缴个人所得税()元。
3~6岁儿童注意发展的特征是什么?
全球化背景下,发展中国家的比较优势和竞争优势问题引起广泛关注。列昂惕夫曾用“列昂惕夫悖论”对俄林等提出的资源禀赋说提出挑战,质疑为何统计数据表明美国是出口劳动力密集型产品、进口资本密集型产品的国家。解释这一谜团对于发展中国家的发展最关键的启示是(
有关《中华人民共和国行政许可法》,下列哪一项说法是不正确的?()
一、注意事项1.监考老师发给你的测试材料分为两部分:试题本和答题纸。2.测试开始前。请在试题本和答题纸上指定位置先填写好自己的姓名、准考证号等项内容。然后再开始答题。3.申论考试与传统的作文考试不同,是分析驾驭材料的能力与表达能力并重的考试。作答参考
PreparingforTestsI.Preparingfortests—Tounderstandthe【T1】oftests【T1】______—Thecommonsenserequiredforbothaphysic
最新回复
(
0
)