首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
admin
2019-08-12
97
问题
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
选项
答案
令φ(x)=f(x)-g(x),显然φ(a)=φ’(a)=0,φ’’(x)>0(x>a). 由[*]得φ’(x)>0(x>a); 再由[*]得φ(x)>0(x>a),即f(x)>g(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/v5N4777K
0
考研数学二
相关试题推荐
(05年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f’(η)f’(ζ)=1.
(04年)设f(x)=|x(1-x)|,则
(17年)设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则
(09年)(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0.δ)(δ>0)内可导,且,则f+’(0)存在
(12年)(I)证明方程xn+n-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明存在,并求此极限.
(18年)设平面区域D由曲线,(0≤t≤2π)与x轴围成,计算二重积分(x+2y)dxdy.
(1998年)设(2E-C-1B)AT=C-1,其中E是4阶单位矩阵.AT是4阶矩阵A的转置矩阵.求A.
(2013年)设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3).则|A|=________.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设F(x)=∫0x+2πesintsintdt,则F(x)()
随机试题
老秦这一人物形象出自于()
AnewpollshowsthatpeoplebelievethatcomputersandtheInternethavemadelifebetterforAmericans,butpeoplealsoseeso
血吸虫卵主要栓塞于
患者,女,74岁,体检胸部X线片显示右上纵隔增宽,向上与颈部软组织影相连,气管局部受压左移,边缘光滑,最可能的诊断为
下列哪一选项是宪法关系中权利与权力转化为现实利益的惟一途径?()
新建项目一般按建筑安装工程费用的()计取。
直流电源线正极外皮颜色应为()。
当影子定价与摊余成本法确定的基金资产净值偏离度的绝对值达到或者超过()时,基金管理人应当就此事项进行临时报告。
______wheretheforeign-bornAmericansmakepeacewiththeirnewculture,theywilllikelywatchtheirchildrenturnintoAmeric
A、Ateacher.B、Amanager.C、Adoctor.D、Acomputerengineer.D题目询问女士现在从事什么工作。由女士说“但是现在我却是电脑工程师”可知选项D(电脑工程师)正确。
最新回复
(
0
)