首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有曲面S:=1,平面∏:2x+2y+z+5=0. (Ⅰ)在曲面S上求平行于平面∏的切平面方程; (Ⅱ)求曲面S与平面∏之间的最短距离.
设有曲面S:=1,平面∏:2x+2y+z+5=0. (Ⅰ)在曲面S上求平行于平面∏的切平面方程; (Ⅱ)求曲面S与平面∏之间的最短距离.
admin
2016-10-26
56
问题
设有曲面S:
=1,平面∏:2x+2y+z+5=0.
(Ⅰ)在曲面S上求平行于平面∏的切平面方程;
(Ⅱ)求曲面S与平面∏之间的最短距离.
选项
答案
(Ⅰ)先写出曲面S上任意点(x
0
,y
0
,z
0
)处的切平面方程. 记S的方程为F(x,y,z)=0,F(x,y,z)=[*]-1,则S上点M
0
(x
0
,y
0
,z
0
)处的切平面方程为 F′
x
(M
0
)(x-x
0
)+F′
y
(M
0
)(y-y
0
)+F′
z
(M
0
)(z-z
0
)=0, 其中F′
x
(M
0
)=x
0
, F′
y
(M
0
)=2y
0
, F′
z
(M
0
)=[*]z
0
. 该切平面与平面∏平行[*]它们的法向量共线即成比例[*]=λ,且 2x
0
+2y
0
+z
0
+5≠0. 因为M
0
(x
0
,y
0
,z
0
)在S上,所以它满足方程 [*] 即4λ
2
=1.λ=±[*]于是,(x
0
,y
0
,z
0
)=±(1,[*],1)显然,(x
0
,y
0
,z
0
)不在平面∏上. 相应的切平面方程是 [*] 即 x+y+[*]z-2=0, x+y+[*]z+2=0. 这就是曲面S上平行于平面∏的切平面方程. (Ⅱ)椭球面S是夹在上述两个切平面之间,故曲面S上切点到平面∏的距离最短或最长 [*] 因此,曲面S到平面∏的最短距离为d
2
=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/kmu4777K
0
考研数学一
相关试题推荐
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
下列各对函数中,两函数相同的是[].
已知函数y=sinx的图形,作函数y=2sin﹙2x-π/2﹚的图形.
(1)设F(x)=f(-x),且f(x)有n阶导数,求F(n)(x);(2)设f(x)=xe-x,求f(n)(x).
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
已知曲线,L:y=x2,求.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d),记当ab=cd时,求I的值.
设总体X的概率密度为f(x)=1/2e-丨x丨(-∞
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
随机试题
简述邮局协议POP3收发邮件的过程。
在项目的盈亏平衡分析中,下列说法正确的是()。
1.背景某通信运营商计划在某地建设移动系统试验网工程,委托只有设备入网资质的移动设备生产厂商编制了初步设计,工程估算价约280万元。初步设计得到运营商的批准后,该运营商采用包工不包料的形式将此工程承包给一家长期合作的施工单位,并委托施工单位进行基
大连对外贸易有限公司(256256204)进口一批进料加工材料,全部用于加工返销。手册号为C18520463851,预录入号为5921036495187。中华人民共和国海关进口货物报关
随着第二次工业革命的进行,主要资本主义国家的工业发生的最大变化是()。
教育行动研究的主体主要是()
FactorsofProduction
Everythingseemedtohavebecomeaweaponofwar.Ourenemieshad(1)_____themostfamiliarobjects(2)_____us,turnedshaving
RFID射频技术多应用于物联网的()。
A、TheincreaseofatmosphericconcentrationofCO2.B、Theincreaseinthequantityofacidraininfuture.C、Awarmingeffectca
最新回复
(
0
)