首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
admin
2016-10-24
29
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n一r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n一r
=ξ
n一r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n一r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n一r
β
n一r
=0,即 (k
0
+k
1
+…+k
n一r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n一r
)b=0,因为b为非零列向量,所以k
0
+k
1
+…+k
n一r
=0, 于是k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0,注意到ξ
1
,ξ
2
,…,ξ
n一r
线性无关,所以k
1
=k
2
=…=k
n一r
=0,故β
0
,β
1
,β
2
,…,β
n一r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组,设β
1
,β
2
,…,β
n一r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n一r+1
=β
n一r+2
一β
1
,根据定义,易证β
1
,β
2
,…,β
n一r+1
线性无关,又γ
1
,γ
2
,…,γ
n一r+1
,为齐次线性方程组Ax=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ksH4777K
0
考研数学三
相关试题推荐
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
(1)怎样建立向量a与有序数组ax、ay、az之间的一一对应关系?数ax、ay、az的几何意义是什么?(2)分别叙述两个向量a、b平行和垂直的充要条件,并给出充要条件的坐标表示式.(3)叙述三个向量a、b、c共面的充要条件,并给出充要条件的坐标表示式.
将下列函数展成麦克劳林级数:
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
证明:函数f(x,y)=(1+ey)cosx-yey有无穷多个极大值点,但无极小值点.
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,向量组(Ⅱ):α1,α2,...,αm-1,β,则
设矩阵已知线性方程组AX=β有解但不唯一,试求(I)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
设齐次线性方程组其中a≠O,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多组解?存有无穷多组解时,求出全部解,并用基础解系表示全部解.
随机试题
______withthesizeofthewholeearth,thehighestmountaindoesn’tseemhighatall.
人民法院审理民事案件,应当根据自愿和合法的原则进行调解。对此,下列哪些理解是错误的?
甲村与乙村交界处20公顷土地的权属由于历史原因一直处于不明确状态,双方多次协商未果。为了早日解决问题,乡政府在双方代表参与的情况下,经过审查裁决土地所有权属于甲村。乡政府的行为属于:()
以下属于可以开立专用存款账户的资金有()。
对序时账的审查分析应注意()。
依次填入下面横线上的词语最恰当的一项是()。我们无法____________生命的长度,但我们可以靠____________它的宽度和高度来____________它的容积,使人生更加丰富多彩。
语文课程评价的目的不仅是为了考查学生达到学习目标的程度,更是为了检验和改进学生的语文学习和教师的教学,……不应过分强调评价的_______功能。突出语文课程评价的整体性和综合性,要从知识与能力、过程与方法、情感态度与价值观几个方面进行评价,以全面考查学生的
我们的整个文明都建立在自然生态之上,它们跟不上我们的步伐,终将令我们也随之______________。将责任推给“适者生存”,任凭野生动物在我们制造的阴影中______________,这不但是一件残忍的事情,更是一件愚蠢的事情。依次填入画横线
Susan:I’msogladtoseeyou,David.【K1】______hasbeensuchalongtime.Howareyou?David:I’mfine,andyou?Susan:I’mju
Amazon,whichgotitsstartsellingbooksonline,announcedthisyearthat,forthefirsttime,itsdigitalbookshadoutsold
最新回复
(
0
)