首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
admin
2016-10-24
80
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n一r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n一r
=ξ
n一r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n一r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n一r
β
n一r
=0,即 (k
0
+k
1
+…+k
n一r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n一r
)b=0,因为b为非零列向量,所以k
0
+k
1
+…+k
n一r
=0, 于是k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0,注意到ξ
1
,ξ
2
,…,ξ
n一r
线性无关,所以k
1
=k
2
=…=k
n一r
=0,故β
0
,β
1
,β
2
,…,β
n一r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组,设β
1
,β
2
,…,β
n一r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n一r+1
=β
n一r+2
一β
1
,根据定义,易证β
1
,β
2
,…,β
n一r+1
线性无关,又γ
1
,γ
2
,…,γ
n一r+1
,为齐次线性方程组Ax=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ksH4777K
0
考研数学三
相关试题推荐
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
写出过点A(2,0,0),B(0,1,0),C(0,0,4)的圆周方程.
设F(x+z,y+z)可微分,求由方程F(x+z,y+z)-1/2(x2+y2+z2)=2确定的函数z=z(x.y)的微分出与偏导数
证明下列不等式:
设准线方程为,母线的方向向量为{-1,0,1},求该柱面方程.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设向量β可由向量组α1,α2,...,αm线性表示,但不能由向量组(I):α1,α2,...,αm-1线性表示,向量组(Ⅱ):α1,α2,...,αm-1,β,则
设X1,X2,…,Xn是总体为Ⅳ(μ,σ2)的简单随机样本,记(I)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
随机试题
惰性金属电极又称为()电极。
关于固定资产的使用寿命、预计净残值和折旧方法,下列说法中正确的有()。
于卵巢浆液性囊腺癌下列哪项是错误的
关于D值与Z值的正确表述有
工人甲在现场作业时摔伤,将所在单位乙公司起诉。现公司对于人民法院作出的要求其现予支付部分工伤员工医疗费用的裁定表示不服,则下列说法正确的是()。
在资产负债表填列过程中,下列各项可以直接按某一个会计科目总账余额填列的是()。
战略的外部环境分析需要考虑经济环境因素,下列的说法正确的有()。
独白
甲乙约定,甲赠与乙紫砂壶一把,合同在乙结婚时生效。该合同属于()(20l7年一专一第31题)
A.overachievingB.recruitingC.highD.withE.underachievingF.shortageG.wher
最新回复
(
0
)