首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
admin
2016-10-24
53
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n,证明:方程组AX=b的线性无关的解向量的个数最多是n一r+l个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n一r
. 设η
0
为方程组AX=b的一个特解, 令β
0
=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n一r
=ξ
n一r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n一r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n一r
β
n一r
=0,即 (k
0
+k
1
+…+k
n一r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n一r
)b=0,因为b为非零列向量,所以k
0
+k
1
+…+k
n一r
=0, 于是k
1
ξ
1
+k
2
ξ
2
+…+k
n一r
ξ
n一r
=0,注意到ξ
1
,ξ
2
,…,ξ
n一r
线性无关,所以k
1
=k
2
=…=k
n一r
=0,故β
0
,β
1
,β
2
,…,β
n一r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组,设β
1
,β
2
,…,β
n一r+2
为方程组AX=b的一组线性无关解,令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n一r+1
=β
n一r+2
一β
1
,根据定义,易证β
1
,β
2
,…,β
n一r+1
线性无关,又γ
1
,γ
2
,…,γ
n一r+1
,为齐次线性方程组Ax=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/ksH4777K
0
考研数学三
相关试题推荐
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
证明:(1)▽(uv)=u▽u+u▽u;(2)▽×(A×B)=B×(▽×A)-A×(▽×B).
讨论函数在点x=0处的连续性.
根据级数收敛与发散的定义判别下列级数的收敛性,并求出其中收敛级数的和:
设f(x,y)=2x2+y2,求▽f(1,2),并用它来求等量线f(x,y)=6在点(1,2)处的切线方程.画出f(x,y)的等量线、切线与梯度向量的草图.
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(-1,-3,-4,-7),α4=(2,1,2,3);
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):ATAX=0,必有
设向量组α1,α2,…,αs线性无关,作线性组合β1=α1+μ1αs,β2=α2+μ2αs,…,βs-1=αs-1+μs-1αs,则向量组β1,β2,…,βs-1线性无关,其中s≥2,μi为任意实数.
设B=(β1,β2,β3),其βi(i=1,2,3)为三维列向量,由于B≠0,所以至少有一个非零的列向量,不妨设β1≠0,由于AB=A(β1,β1,β3)=(Aβ1,Aβ2,Aβ3)=0,→Aβ1=0,即β1为齐次线性方程组AX=0的非零解,于是系数矩阵的
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)