[2014年,第21题]已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B通解为( )。

admin2016-04-12  66

问题 [2014年,第21题]已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B通解为(    )。

选项 A、x=k11一α2)+k213)+α1
B、x=k11一α3)+k223)+α1
C、x=k12一α1)+k22一α3)+α1
D、x=k12一α3)+k212)+α1

答案C

解析 因Ax=B的通解由其对应齐次Ax=0的通解加上Ax=B的一个特解来构成,所以关键是找出Ax=0的通解。利用秩r(A)=2—2,知方程组Ax=0的基础解系含有两个线性无关的解向量,再由非齐次方程组Ax=B的两个解之差是对应齐次Ax=0的解,并且可证α21和α23是线性无关的,故知k121)+k223)是齐次方程组Ax=0的通解。应选C。
转载请注明原文地址:https://kaotiyun.com/show/lUAf777K
0

最新回复(0)