首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
已知方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组 的通解,并说明理由。
admin
2017-03-15
79
问题
已知方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
,…,b
n,2n
)
T
。试写出线性方程组
的通解,并说明理由。
选项
答案
由题意可知,线性方程组(2)的通解为 y=c
1
(a
1
,a
12
,…,a
1,2n
)
T
+c
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+c。(a
n1
,a
n2
,…,a
n,2n
)
T
, 其中c
1
,c
2
,…,c
n
是任意的常数。 这是因为: 设方程组(1)和(2)的系数矩阵分别为A,B,则根据题意可知AB
T
=O,因此 BA
T
=(AB
T
)
T
=O, 可见A的n个行向量的转置为(2)的n个解向量。 由于刀的秩为n,所以(2)的解空间的维数为2n-r(B)=2n-n=n,又因为A的秩等于2n与(1)的解空间的维数的差,即n,因此A的n个行向量是线性无关的,从而它们的转置向量构成(2)的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/lVu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
用待定系数法,将下列积分中被积函数的分子设为Af(x)+Bfˊ(x),利用的求法求下列不定积分:
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
已知f〞(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
极限=_________.
设z=z(x,y)满足≠0,由z=z(x,y)可解出y=y(z,x).求:(Ⅰ);(Ⅱ)y=y(z,x).
随机试题
公共决策的核心是【】
在经济萧条时期,所采用的货币政策工具是()
Formanyyears,scientistscouldn’tfigureouthowatomsandmolecules(分子)ontheEarthcombinedtomakelivingthings.Plants,f
Therearetwokindsofcomputers(there),both(ofthem)are(widely)(used)today.
丙烯酰胺电泳分离DNA的最佳范围是
肺叶发生肺不张时,典型的X线表现是
Windows2003提供了一个基于图形的多任务、多窗口的环境。()
下列关于保险利益的说法中,正确的是( )。
财政政策分为扩张性财政政策、紧缩性财政政策和中性财政政策,其划分标准是()。
一个行业的__________发展可以重创一个国家的经济,__________社会危机,这不是奇迹,而是房地产经常干的事情。比如曾经在美国,在日本,在阿根廷,在西班牙——或许还有不久之后的中国。填入画横线部分最恰当的一项是:
最新回复
(
0
)