首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
设矩阵A=的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
admin
2017-01-14
48
问题
设矩阵A=
的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
选项
答案
矩阵A的特征多项式为 |λE-A|=[*]=(λ-2)(λ
2
-8λ+18+3a)。 如果λ=2是单根,则λ
2
-8λ+18+3a是完全平方,必有18+3a=16,即a=[*]。则矩阵A的特征值是2,4,4,而r(4E-A)=2,故λ=4只有一个线性无关的特征向量,从而A不能相似对角化。 如果λ=2是二重特征值,则将λ=0代入λ
2
-8λ+18+3a=0可得a=-2。于是λ
2
-8λ+18+3a=(λ-2)(λ-6)。则矩阵A的特征值是2,2,6,而r(2E-A)=1,故λ=2有两个线性无关的特征向量,从而A可以相似对角化。
解析
转载请注明原文地址:https://kaotiyun.com/show/lWu4777K
0
考研数学一
相关试题推荐
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程(d2x)/(dy2)+(y+sinx)(dx/dy)=0变换为y=y(x)满足的微分方程;
设函数f(x)=(x-1)(ex-2)…(enx-n),其中n为正整数,则f’(0)=
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
设随机变量X和Y相互独立,X在区间(0,2)上服从均匀分布,y服从参数为1的指数分布,则概率P{X+Y>1}=().
设测量的随机误差X~N(0,102),试求100次独立重复测量,至少有3次测量误差的绝对值大于19.6的概率α,并用泊松分布求α的近似值.
设三阶矩阵,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a=________.
随机试题
居住建筑的文化含义不包括
下列哪些疾病属纤维素性炎
某人民法院对被告人曹某等共同抢劫一案作出一审判决。曹某对犯罪事实供认不讳,仅以量刑过重为由提出上诉,其他被告人未提出上诉,人民检察院也未抗诉。二审法院经审理认为曹某构成犯罪,但曹某在二审作出裁判前因病死亡。二审法院应当如何处理该案件?()
2013年3月,王某在一次抢劫过程中,因行人报案,被市公安局侦查人员当场抓获。从侦查阶段到审判阶段,王某对被指控的抢劫罪没有异议。2013年6月15日。甲市基层人民法院正式受理了此案,并认为王某可能被判处3年以下有期徒刑,遂直接决定适用简易程序进行审理。2
下列上市公司中,可以公开发行优先股的有()。[2018年12月真题]Ⅰ.甲公司,其普通股为上证50指数成份股Ⅱ.乙公司,以公开发行优先股作为支付手段收购其他上市公司Ⅲ.丙公司,以减少注册资本为目的回购普通股,公开发行优先股作为支付
在信贷资产证券化过程中,()不属于信用增级的常用类型。
由于不可抗力因素导致的中断都属于非正常中断。()
在下列的管理沟通障碍中,属于客观障碍的有()。
心理现象是心理活动的表现形式。一般是指个人在社会活动中通过亲身经历和体验表现出的情感和意志等活动。根据上述定义,下列不属于心理现象的是()。
Whatdoweknowabouttheman?
最新回复
(
0
)