首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间(一∞,+∞)内具有连续的一阶导数,并设 f(x)=2∫0xf’(x—t)t2dt+sin x, 求f(x).
设f(x)在区间(一∞,+∞)内具有连续的一阶导数,并设 f(x)=2∫0xf’(x—t)t2dt+sin x, 求f(x).
admin
2018-09-20
66
问题
设f(x)在区间(一∞,+∞)内具有连续的一阶导数,并设
f(x)=2∫
0
x
f’(x—t)t
2
dt+sin x,
求f(x).
选项
答案
f(x)=2∫
0
x
f’(x-t)t
2
dt+sin x =一2∫
0
x
t
2
d[f(x—t)]+sin x =一2[t
2
f[(x一t)|
0
x
—2∫
0
x
tf(x一t)dt]+sin x =一2[x
2
f(0)-0-2∫
x
0
(x一u)f(u)(一du)]+sin x =-2x
2
f(0)+4x∫
0
x
f(u)du一4∫
0
x
uf(u)du+sin x, f’(x)=一4xf(0)+4∫
0
x
f(u)du+4xf(x)一4xf(x)+cosx =一4xf(0)+4∫
0
x
f(u)du+cos x, f"(x)=一4f(0)+4f(x)一sinx. 由上述表达式可见有f(0)=0,f’(0)=1.所以 f”(x)一4f(x)=一sinx. 解得 f(x)=C
1
e
2x
+C
2
e
-2x
+[*] 由f(0)=0,f’(0)=1,得 C
1
+C
2
=0, 2C
1
一2C
2
+[*] 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/nxW4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=5x12+5x22+cx32-2x1x2-6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
设A是n阶实对称矩阵,AB+BTA是正定矩阵,证明A可逆.
设A是n阶正定矩阵,α1,α2,…,αn是n维非零列向量,且αiTAαj=0(i≠j),证明α1,α2,…,αm线性无关.
二次型xTAx正定的充要条件是
已知微分方程y’’+(x+e2y)(y’)3=0.(Ⅰ)若把y看成自变量,x看成函数,则方程化成什么形式?(Ⅱ)求此方程的解.
求下列差分方程的通解:(Ⅰ)yt+1-αyt=eβt,其中α,β为常数,且α≠0;(Ⅱ)yt+1+2yt=
设n维列向量α1,α2,…,αn-1线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
设f(x)的定义域为[1,+∞),f(x)在[1,+∞)可积,并且满足方程讨论f(x)的单调性.
已知f(x)=ax3+x2+2在x=0和x=-1处取得极值,求f(x)的单调区间、极值点和拐点.
计算下列各题:(Ⅰ)由方程xy=yx确定x=x(y),求.(Ⅱ)方程y-xey=1确定y=y(x),求y’’.(Ⅲ)设2x-tan(x-y)=
随机试题
外圆磨床床身纵向导轨在垂直平面内的平行度,当最大磨削长度不大于500mm时,公差值为0.2mm/1000mm。()
A.易发生DICB.骨髓无特异性改变C.缺乏葡萄糖脑苷脂酶D.缺乏神经鞘磷酸脂酶E.尿中出现B-J蛋白急性早幼粒细胞性白血病
桑叶具有而菊花不具有的功效是
对于商用房贷款抵押物,以下说法错误的是()。[2010年5月真题]
关于心理社会治疗模式对人的成长发展的假设,下列选项中正确的说法是( )。
在我国各个地区都要实施义务教育,对于法律规定的义务教育的规则,全社会都必须遵守。这体现出义务教育的:
Generallyspeaking,alotofpatienceis______tolookafterasickpatient.
A、Anyastronautreturnsfromtheuniverseissafe.B、Anyastronautreturnsfromtheuniversesuffersalot.C、Wecanassumethat
Itisnevertooearlyforyoutolearnaboutthevalueofmoneyasateenager.Manyteenshaveno【B1】______whatittakestoearn
A、Mostofitislostintheupperandloweratmosphere.B、Mostofitisreflectedbythegasesintheupperatmosphere.C、Mosto
最新回复
(
0
)