设f(x)在区间[a,b]上可导,且满足f(b).cosb=证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ。

admin2017-10-19  30

问题 设f(x)在区间[a,b]上可导,且满足f(b).cosb=证明至少存在一点ξ∈(a,b),使得f’(ξ)=f(ξ).tanξ。

选项

答案由f(x)在区间[a,b]上可导,知f(x)在区间[a,b]上连续,从而F(x)=f(x)cosx在[*](a,b)使 F’(ξ)=f’(ξ)cosξ—f(ξ)sinξ=0,即f’(ξ)=f(ξ)tanξ,ξ∈(a,b)。

解析
转载请注明原文地址:https://kaotiyun.com/show/laH4777K
0

最新回复(0)