设二元函数z=f(x,y)满足:=excosy+y,又fx(x,0)=x/(1+4x2),f(0,y)=y,则f(x,y)=________.

admin2022-12-09  35

问题 设二元函数z=f(x,y)满足:=excosy+y,又fx(x,0)=x/(1+4x2),f(0,y)=y,则f(x,y)=________.

选项

答案exsiny+xy2/2+(1/8)㏑(1+4x2)+y-siny

解析
由fx(x,0)=x/(1+4x2)得φ(x)=x/(1+4x2),即fx=exsiny+y2/2+x/(1+4x2),
从而f(x,y)=exsiny+xy2/2+1/8㏑(1+4x2)+h(y),
再由f(0,y)=y得h(y)=y-siny,故f(x,y)=exsiny+xy2/2+(1/8)㏑(1+4x2)+y-siny.
转载请注明原文地址:https://kaotiyun.com/show/ljgD777K
0

最新回复(0)