首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续可导,f(1)=0,∫01f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
设f(x)在[0,1]上连续可导,f(1)=0,∫01f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
admin
2017-12-18
43
问题
设f(x)在[0,1]上连续可导,f(1)=0,∫
0
1
f’(x)dx=2,证明:存在ξ∈[0,1],使得f’(ξ)=4.
选项
答案
由分部积分,得 ∫
0
1
xf’(x)dx=xf(x)|
0
1
一∫
0
1
f(x)dx=-∫
0
1
f(x)dx=2,于是∫
0
1
f(x)dx=-2. 由拉格朗日中值定理,得f(x)=f(x)一f(1)=f’(η)(x一1),其中η∈(x,1),f(x)=f’(η)(x一1)两边对x从0到1积分,得∫
0
1
f(x)dx=∫
0
1
f’(η)(x一1)dx=一2.因为f’(x)在[0,1]上连续,所以f’(x)在[0,1]上取到最小值m和最大值M,由M(x一1)≤f’(η)(x一1)≤m(x一1)两边对x从0到1积分, [*] 由介值定理,存在ξ∈[0,1],使得f’(ξ)=4.
解析
转载请注明原文地址:https://kaotiyun.com/show/lur4777K
0
考研数学一
相关试题推荐
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(Xk)=ak(k=1,2,3,4).证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为,又设X,Z是否相互独立?为什么?
设,α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=求方程组(Ⅱ)BX=0的基础解系;
设α1,α2,…,αn为n个n维线性无关的向量,A是n阶矩阵.证明:Aα1,Aα2,…,Aαn线性无关的充分必要条件是A可逆.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:存在η∈(a,b),使得f"(η)一3f’(η)+2f(η)=0.
方程组的通解是__________.
设函数f(u)可微,且f(0)=0,f’(0)≠0,记F(t)=(x2+y2+z2)dv,其中Ω={(x,y,z)|x2+y2+z2≤t2}.若当t→0+时,Ft(t)与tk是同阶无穷小,则k等于
随机试题
A.养阴润燥,清肺利咽B.清热化痰,宣肺止咳C.清肺止咳,化痰通便D.解表化饮,止咳平喘E.清肺润燥,化痰止咳急支糖浆的功能是()。
乳腺癌特征性的乳腺体征是
根据新修订的《中华人民共和国公司法》(2006年1月1日起施行)的规定,公司分为()形式。
一般地,在证券指令驱动下,如果在同一价格上有多笔交易指令,此时会遵循()的成交原则。
企业出售无形资产所取得的净收益,应计入()科目。
下列不属于影视广告与其他媒体相比的明显优势的有()。
习近平总书记在《告台湾同胞书》发表40周年纪念会上指出,我们对台湾同胞一视同仁,将继续率先同台湾同胞分享大陆发展机遇,为台湾同胞台湾企业提供同等待遇。为贯彻习近平总书记的相关讲话精神,《关于进一步促进两岸经济文化交流合作的若干措施》印发。下列相关说法错误的
国际分工的发展过程及其对国际贸易的影响。
下列程序中通常不属于板级支持包(BSP)内容的是()。
Faces,likefingerprints,areunique.Didyoueverwonderhowitispossibleforustorecognizepeople?Evenaskilledwriterp
最新回复
(
0
)