首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明: (Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零; (Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
admin
2017-01-21
66
问题
已知m个向量α
1
,…,α
m
线性相关,但其中任意m—1个向量都线性无关,证明:
(Ⅰ)如果等式k
1
α
1
+…+k
m
α
m
=0成立,则系数k
1
,…,k
m
或者全为零,或者全不为零;
(Ⅱ)如果等式k
1
α
1
+…+k
m
α
m
=0和等式l
1
α
1
+…+l
m
α
m
=0都成立,则
其中l
1
≠0。
选项
答案
(Ⅰ)假设存在某个k
i
=0,则由k
1
α
1
+…+k
m
α
m
=0可得 k
1
α
1
+…+k
i—1
α
i—1
+k
i+1
α
i+1
+…+k
m
α
m
=0。 (1) 因为任意m—1个向量都线性无关,所以必有k
1
=…=k
i—1
=k
i+1
=…=k
m
=0,即系数k
1
,…,k
m
全为零。 所以系数k
1
,…,k
m
或者全为零,或者全不为零。 (Ⅱ)由(Ⅰ)可知,当l
1
≠0时,系数l
1
,…,l
m
全不为零,所以 [*] 又因为任意m—1个向量都线性无关,所以[*]+k
m
=0, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/m2H4777K
0
考研数学三
相关试题推荐
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
设f(x,y)与φ(x,y)均为可微函数,且φˊy(x,y)≠0,已知(xo,yo)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTB=0,记n阶矩阵A=αβT,求:(I)A2;(II)矩阵A的特征值和特征向量.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设A,B为同阶可逆矩阵,则().
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设幂级数anxn的收敛半径为3,则幂级数nan(x-1)n+1的收敛区间是
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设函数f(x,y)连续,则二次积分等于().
随机试题
试用力法解下图(a)所示结构,绘制弯矩图并求B点的水平位移和BC梁中点的竖向位移。
腰椎间盘最常见的突出和退变间隙依次排列为
患者,男,50岁。因手术中失血过多,医嘱:输入库血1200ml,输血后病人出现手术部位渗血较多,皮肤、粘膜多处可见明显淤点、淤斑,手足抽搐,血压下降。导致的原因主要是
具有疼痛彻骨,难消,难溃,难敛特点的疾病是()具有局部光软无头,红肿疼痛,易肿,易脓,易溃,易敛特点的疾病是()
A.脓肿B.溃疡C.空洞D.化生E.伪膜幼稚的成纤维细胞损伤后转变成骨细胞的过程是
房地产经纪服务合同纠纷的解决方式不包括()。
下列属于有机胶凝材料的是()。
对于基金管理公司的重大事项的报备,国务院证券监督管理机构应当自受理申请之日起()日内做出批准或者不予批准的决定,并通知申请人;不予批准的,应当说明理由。
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
THETRIANGLEFACTORYFIRE1ThefireattheTriangleWaistCompanyinNewYorkCitywasoneoftheworstworkplacedisastersi
最新回复
(
0
)