首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
admin
2018-02-07
83
问题
设线性方程组(1)Ax=0的一个基础解系为α
1
=(1,1,1,0,2)
T
,α
2
=(1,1,0,1,1)
T
,α
3
=(1,0,1,1,2)
T
。线性方程组(2)Bx=0的一个基础解系为β
1
=(1,1,一1,一1,1)
T
,β
2
=(1,一1,1,一1,2)
T
,β
3
=(1,一1,一1,1,1)
T
。求
线性方程组(3)
的通解;
选项
答案
线性方程组(1)Ax=0的通解为x=k
1
α
1
+k
2
α
2
+k
3
α
3
;线性方程组(2)Bx=0的通解为x=l
1
β
1
+l
2
β
2
+l
3
β
3
;线性方程组(3)[*]的解是方程组(1)和(2)的公共解,故考虑线性方程组(4)k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
β
1
+l
2
β
2
+l
3
β
3
,将其系数矩阵作初等行变换,即 [*] 则方程组(4)的一个基础解系是(一2,0,2,一1,0,1)
T
。将其代入(4)得到方程组(3)的一个基础解系 ξ=一2α
1
+2α
2
=一β
1
+β
3
=(0,一2,0,2,0)
T
。 所以方程组(3)的通解为 x=k(0,一1,0,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/mHk4777K
0
考研数学二
相关试题推荐
设A,B为同阶可逆矩阵,则().
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
下列函数可以看成是由哪些简单函数复合而成?(其中a为常数,e≈2.71828)
已知f(x)是微分方程=_______.
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
求函数的最大值和最小值。
f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3.若二次型f的规范形为y12+y22,求a的值.
随机试题
老秦这一人物形象出自于()
AnewpollshowsthatpeoplebelievethatcomputersandtheInternethavemadelifebetterforAmericans,butpeoplealsoseeso
血吸虫卵主要栓塞于
患者,女,74岁,体检胸部X线片显示右上纵隔增宽,向上与颈部软组织影相连,气管局部受压左移,边缘光滑,最可能的诊断为
下列哪一选项是宪法关系中权利与权力转化为现实利益的惟一途径?()
新建项目一般按建筑安装工程费用的()计取。
直流电源线正极外皮颜色应为()。
当影子定价与摊余成本法确定的基金资产净值偏离度的绝对值达到或者超过()时,基金管理人应当就此事项进行临时报告。
______wheretheforeign-bornAmericansmakepeacewiththeirnewculture,theywilllikelywatchtheirchildrenturnintoAmeric
A、Ateacher.B、Amanager.C、Adoctor.D、Acomputerengineer.D题目询问女士现在从事什么工作。由女士说“但是现在我却是电脑工程师”可知选项D(电脑工程师)正确。
最新回复
(
0
)