首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记。 (1)证明二次型f对应的矩阵为2ααT+ββT; (2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
admin
2014-01-26
86
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
。
(1)证明二次型f对应的矩阵为2αα
T
+ββ
T
;
(2)若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y
1
2
+y
2
2
.
选项
答案
(1)记x=(x
1
,x
2
,x
3
),因为 f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] =x
T
(2αα
T
)x+x
T
(ββ
T
)x=x
T
(2αα
T
+ββ
T
)x, 且2αα
T
+ββ
T
为对称矩阵,所以二次型f对应的矩阵为2αα
T
+ββ
T
. (2)记A=2αα
T
+ββ
T
.由α,β正交且均为单位向量得 Aα=(2αα
T
+ββ
T
)α=2α(α
T
.α)+β(β
T
.α)=2α, Aβ=(2αα
T
+ββ
T
)β=2α(α
T
.β)+β(β
T
.β)=β, 于是α为A的对应于特征值λ
1
=2的特征向量,β为A的对应于特征值λ
2
=1的特征向量. 又因r(A)=r(2αα
T
+ββ
T
)≤r(2αα
T
)+r(ββ
T
)≤2<3,所以λ
3
=0为A的第3个特征值,故二次型f在正交变换下的标准形为2y
1
2
+y
2
2
.
解析
充分利用行向量与列向量的乘积、列向量与行向量的乘积的特殊性分析求解.
转载请注明原文地址:https://kaotiyun.com/show/gm34777K
0
考研数学二
相关试题推荐
(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于【】
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
(04年)函数f(χ)=在下列哪个区间内有界:【】
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
设A为3阶实对称矩阵,且满足条件A2+2A=O,A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
罗杰斯认为“自我概念”可以涵盖三个层面,分别是:(),这三个自我需要能交互运作充分发挥他的功能,健康自我才得以实现。
培养真菌的最适合pH是
尿毒症患者发生纤维性骨炎的原因是
三羧酸循环的酶位于( )。呼吸链多数成分位于( )。
患者男性,70岁,高血压伴房颤多年,平时仅用降压药控制血压,现出现心慌气短,心电图显示房颤并伴有心衰,治疗应选择的药物是
关于ATP在能量代谢中的作用,哪项是不正确的
房地产商以价格来制定销售量。()
下列行为中,属于违法分包行为的有()。
阅读下面一首宋词,完成后面两题。清平乐·村居辛弃疾茅檐低小,溪上青青草。醉里吴音相媚好,白发谁家翁媪?大儿锄
教师是人类灵魂的工程师,对青少年一代的成长起()。
最新回复
(
0
)