首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2015-07-10
36
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=一1,λ
2
=一2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e一+C
2
e
-2x
. 令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=ax e
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=一1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/mNU4777K
0
考研数学三
相关试题推荐
()是中国共产党人的精神支柱和政治灵魂。
2022年3月1日,习近平总书记在中央党校(国家行政学院)中青年干部培训班开班式上发表重要讲话指出,共产党人必须牢记,()是最大政绩。
国家主席习近平2021年12月22日下午在中南海瀛台会见来京述职的香港特别行政区行政长官林郑月娥。习近平指出,实践证明,()符合“一国两制”原则,符合香港实际,为确保“一国两制”行稳致远、确保香港长期繁荣稳定提供了(
2022年国务院政府工作报告指出,国内生产总值达到()万亿元,增长8.1%。
产业资本在循环过程中要经历三个不同阶段。在不同的阶段,资本依次执行三种不同职能,处于第三阶段的产业资本执行的是
结合材料回答问题:材料1为做好疫情防控、阻断病毒传播渠道,近期多地积极行动、出台措施?规范疫情期间废弃口罩收运处置,加强医疗废弃物处置监管。福建省利用省级生态环境大数据平台,加强疫情期间医疗废弃物监管。福建省级生态环境大数据平
由于我们对地球内部的地质结构和应力变化情况不够了解,更无法直接进入地球内部观测地震的孕育、发生过程,地震预测至今仍是世界性的科学难题。但面对潜在的地震灾害风险,我们并非只能被动应对,而可以未雨绸缪。无论是利用人工智能技术监测地震,尽快发出预警信息争取防护时
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
设边长为a的正方形平面薄板的各点处的面密度与该点到正方形中心的距离的平方成正比,求该薄片的质量.
随机试题
患者女,32岁。右手腕背部无明显原因出现一蚕豆大小的肿块,表面光滑皮色不变,触之有囊性感,肿块基底部固定,有轻压痛。最可能的诊断是
年幼的“留守儿童”最需要的是生活照顾、满足他们的营养和健康需要、发展与人相处的社会能力等,这里采用的介入行动原则是()。
资产负债表趋势分析包括()
下列关于原核生物转录过程的叙述正确的是
原尿中不被重吸收的物质是
多层螺旋CT对X线球管最关键的要求是
乳腺癌CMF化疗方案的药物是
会计职业道德的基本工作准则是()。
学前儿童对脂肪的需要主要用于哪些方面?
师德建设最根本之处,是教师在教育过程中必须表现出()。
最新回复
(
0
)