首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e-x=0,求f(x).
admin
2015-07-10
35
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
-x
=0可化为f’(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
-x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
-x
, 由λ
2
+3λ+2=0得λ
1
=一1,λ
2
=一2, 则方程f"(x)+3f’(x)+2f(x)=0的通解为C
1
e一+C
2
e
-2x
. 令f"(x)+3f’(x)+2f(x)=e
-x
的一个特解为y
0
=ax e
-x
,代入得a=1, 则原方程的通解为f(x)=C
1
e
-x
+C
2
e
-2x
+xe
-x
. 由f(0)=1,f’(0)=一1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
-2x
+xe
-x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/mNU4777K
0
考研数学三
相关试题推荐
《建设高标准市场体系行动方案》指出,要制定出台()放宽市场准入特别措施。
2022年6月9日,商务部新闻发言人束珏婷在新闻发布会上表示,目前,正按照原定计划稳步推进今年11月在上海线下举办(),各项工作进展顺利。企业商业展方面,签约面积已超过规划面积的75%,世界500强和行业龙头企业数量已经超过250家。
据人民日报2021年9月7日评论员文章报道,近日,《横琴粤澳深度合作区建设总体方案》《全面深化前海深港现代服务业合作区改革开放方案》公开发布,就支持横琴粤澳深度合作区发展、推动前海合作区全面深化改革开放作出重要部署。这对于推动()建设取
()是党在新的时代条件下带领全国各族人民进行的新的伟大革命。
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
求抛物线y=ax2+bx+c上具有水平切线的点.
设一平面通过从点(1,-1,1)到直线的垂线,且与平面z=0垂直,求此平面的方程.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).利用(1)的结论计算定积分;
设f(x)有连续的导数,f(0)=0,fˊ(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当x→0时,Fˊ(x)与xk是同阶无穷小,则k等于()
随机试题
Hereismycard.Let’skeepin______.
发现前房积脓时,应首先考虑
A、18-β-H甘草酸B、胆酸C、齐墩果酸D、去氧胆酸E、蟾毒灵-3-硫酸酯具有强心作用的化合物
A.O/W型基质B.吸水性差的基质C.高级脂肪醇D.山梨醇E.羟苯酯类具有反向吸收作用的基质是()
下列选项中,不属于外汇市场功能的有()。
一节好课的标准包括()。
商业贿赂是以经营者为主体,以现金、实物等为手段,以销售、购买商品为目的,以破坏正常的市场竞争秩序为根本危害的一种行为。根据以上定义,认定商业贿赂的标准不包括()。
关于液体燃料,下列说法错误的是:
Exercise,everyoneadvises]Butimmediately,whenyoutry,yourunintotrouble.【61】Thereissomuchcontradictory,sometimes
A、Preparefortheexam.B、Gotocrazy.C、Gotoseeamovie.D、Havearest.A推理判断题。女士说男士已经学习一天了,建议他和自己去看场电影;男士说如果他准备好明天的数学考试了,他就去
最新回复
(
0
)