首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。 (Ⅰ)a,b为何值时,g(x)在x=0处连续; (Ⅱ)a,b为何值时,g(x)在x=0处可导。
设g(x)=其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。 (Ⅰ)a,b为何值时,g(x)在x=0处连续; (Ⅱ)a,b为何值时,g(x)在x=0处可导。
admin
2020-03-10
37
问题
设g(x)=
其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。
(Ⅰ)a,b为何值时,g(x)在x=0处连续;
(Ⅱ)a,b为何值时,g(x)在x=0处可导。
选项
答案
(Ⅰ)[*] 若要g(x)在x=0处连续,必须[*]=g(0),即b=—1。 故b=—1,a为任意实数时,g(x)在x=0处连续。 (Ⅱ)若要g(x)在x=0处可导,则必须g(x)在x=0处连续(b=—1),且g
—
’
(0)=g
+
’
(0), 所以 [*] 所以当a=[*][f"(0)一1],b =—1时,g(x)在x=0处可导。
解析
转载请注明原文地址:https://kaotiyun.com/show/mVD4777K
0
考研数学三
相关试题推荐
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设有向量组α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是
设随机变量X的分布函数为F(x),概率密度为f(x)=af1(x)+bf2(x),其中f1(x)是正态分布N(0,σ2)的概率密度,f2(x)是参数为λ的指数分布的概率密度,已知F(0)=,则()
设,则当x→0时,两个无穷小的关系是().
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则=_____________________。
设区域D={(x,y)︱x2+y2≤4,x≥0,y≥0},f(x)为D上正值连续函数,a,b为常数,则=()
设f(x)在0<︱x︱<δ时有定义,其中δ为正常数,且,求极限。
计算二重积分x(y+1)dσ,其中积分区域D是由y轴与曲线y=,y=所围成。
求下列数列极限:
随机试题
西红柿:香菇
治疗肺心病心力衰竭的首要措施是()
下列哪项不属于急性宫颈炎
A.健脾益气,化湿止泻B.消食导滞,和中止泻C.抑肝扶脾,燥湿止泻D.清热燥湿,分利止泻E.芳香化湿,解表散寒患者泄泻清稀,脘闷食少,腹痛肠鸣,恶寒头痛,其中医治法是()
A.胸骨左缘第3~4肋间Ⅲ~Ⅳ级粗糙的收缩期杂音B.胸骨左缘第2~3肋间Ⅱ~Ⅲ级喷射性收缩期杂音C.胸骨左缘第2肋问粗糙响亮的连续性机器样杂音D.胸骨左缘第2~4肋间Ⅱ~Ⅲ级喷射性收缩期杂音E.胸骨左缘第2肋间Ⅱ~V级喷射性收缩期杂音室间隔缺损
杵状指在新生儿出现在
执罚部门拍卖所查处的属于一般商业部门经营的物品,应( )。
下列雕塑作品表现唐太宗李世民生平战功的是()。
中国特色社会主义道路,就是
文件系统中会出现用户文件名冲突问题,为解决这个问题,通常采用的方法是()。
最新回复
(
0
)