首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
admin
2016-10-20
50
问题
设f(x)在(a,b)内二阶可导,且a<x
1
<x
2
<b.
(I)若x∈(a,b)时f’’(x)>0,则
对任何x∈(x
1
,x
2
)成立;
(Ⅱ)若x∈(a,b)时f’’(x)<0,则
对任何x∈(x
2
,x
2
)成立.
选项
答案
①因(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).把(2.17)式改写成下面的等价不等式,有 (x
2
-x)[f(x)-f(x
1
)]<(x-x
1
)[f(x
2
)-f(x)], 由拉格朗日中值定理知 (x
2
-x)[f(x)-f(x
1
)]=(x
2
-x)(x-x
1
)f’(ξ
1
),x
1
<ξ
1
<ξ
1
,(x-x
1
)[f(x
2
)-f(x)]=(x-x
1
)(x
2
-x)f’(ξ
2
),x<ξ
2
<x
2
. 由f’’(x)>0知f’(x)单调增加,故f’(ξ
1
)<f’(ξ
2
),由此即知等价不等式成立,从而(Ⅰ)成立. ②引进辅助函数 [*] 故F(x)的图形在[x
1
,x
2
][*](a,b)上为凹的.由F(x
1
)=F(x
2
)=0可知F(x)<0,从而不等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/maT4777K
0
考研数学三
相关试题推荐
1
掷一枚骰子,观察其出现的点数,A表示“出现奇数点”,B表示“出现的点数小于5”,C表示“出现的点数是小于5的偶数”,用集合列举法表示下列事件:Ω,A,B,C,A+B,A-B,B-A,AB,AC,+B.
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
某国经济可能面临三个问题:A1=“高通胀”,A2=“高失业”,A3=“低增长”,假设P(A1)=0.12,P(A2)=0.07,P(A3)=0.05,P(A1∪A2)-0.13,P(A1∪A3)=0.14,P(A2∪A3)=0.10,P(A1∩A2∩
设f(x,y)在点(0,0)的某个邻域内连续,求极限
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
求函数f(x)=(1-x)/(1+x)在x=0点处带拉格朗口余项的n阶泰勒展开式.
设随机变量X的密度函数为f(x),方差DX=4,而随机变量Y的密度函数为2f(一2y),X且Y的相关系数用切比雪夫不等式估计概率P{|Z|≥4}.
随机试题
既不会在“面子”上引起相互关系的紧张,又不会造成理解障碍的谈判信息传递方式的是()
粉末状制剂需要控制粒子的大小,是因为粒子大小与下列哪种因素有关()
男性,55岁,反复不规则胃胀痛3年,胃镜诊断为萎缩性胃窦炎。以下哪项病理改变不但见于萎缩性胃炎,亦见于正常老年人
β肾上腺素受体阻断药可
根据《反不正当竞争法》的规定,下列哪些不属于不正当竞争的行为?
商业银行为房地产开发公司提供贷款属于银行业务中的()。
下列各项中属于民事法律行为的是()。
设数据库表中有一个C型字段NAME,打开表文件后,要把内存变量CC的字符串内容输入到当前记录的NAME字段,应当使用命令:
Inthe1900’s,Americantownspeopleusuallywashedandbrushedtheirteethandcombedtheirhairinthekitchen.Ortheykepta
Nooneshouldstandinjudgmentonanyonebyhislook.
最新回复
(
0
)