首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
admin
2016-10-20
38
问题
设f(x)在(a,b)内二阶可导,且a<x
1
<x
2
<b.
(I)若x∈(a,b)时f’’(x)>0,则
对任何x∈(x
1
,x
2
)成立;
(Ⅱ)若x∈(a,b)时f’’(x)<0,则
对任何x∈(x
2
,x
2
)成立.
选项
答案
①因(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).把(2.17)式改写成下面的等价不等式,有 (x
2
-x)[f(x)-f(x
1
)]<(x-x
1
)[f(x
2
)-f(x)], 由拉格朗日中值定理知 (x
2
-x)[f(x)-f(x
1
)]=(x
2
-x)(x-x
1
)f’(ξ
1
),x
1
<ξ
1
<ξ
1
,(x-x
1
)[f(x
2
)-f(x)]=(x-x
1
)(x
2
-x)f’(ξ
2
),x<ξ
2
<x
2
. 由f’’(x)>0知f’(x)单调增加,故f’(ξ
1
)<f’(ξ
2
),由此即知等价不等式成立,从而(Ⅰ)成立. ②引进辅助函数 [*] 故F(x)的图形在[x
1
,x
2
][*](a,b)上为凹的.由F(x
1
)=F(x
2
)=0可知F(x)<0,从而不等式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/maT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
A、 B、 C、 D、 B
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
证明下列不等式:
证明如下的平行四边形法则:2(|a|2+|b|2)=|a+b|2+|a-b|2,说明这一法则的几何意义.
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
用适当的变换将下列方程化为可分离变量的方程,并求出通解:;(2)(x+y)2yˊ=1;(3)xyˊ+y=yln(xy);(4)xyˊ+x+sin(x+y)=0.
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2-8x1x2-2x12-10x22,在广告费用不限的情况下,求最优
设二维随机变量X和Y的联合概率密度为求X和Y的联合分布F(x,y).
随机试题
Studentswithfinancialproblemsaretroubledbyhightuition______.
下列属于诊断急性风湿热的主要表现的有
痛经气滞血瘀证的用方为痛经气血虚弱证的用方为
特殊用地是指用于军事、外事和保安等特殊性质的用地,包括()。
经营者集中如果附加业务剥离的限制性条件,且采取受托剥离的方式,则剥离义务人应在商务部作出审查决定之日起一定期限内向商务部提交监督受托人人选,在进入受托剥离阶段一定期限前向商务部提交剥离受托人人选。这两个期限分别是()。
唯物辩证法与形而上学的种种分歧的根本原因在于是否承认矛盾,是否承认事物的内部矛盾是事物发展的源泉。
一、注意事项1.申论考试是对应考者的阅读理解能力、综合分析能力、提出和解决问题的能力、文字表达能力的测试。2.作答参考时限:150分钟,其中阅读资料40分钟,作答110分钟。3.仔细阅读给定资料,按照后面提出的“申论要求”依次作
根据物权客体的种类,物权可分为()。(2009年单选37)
为命令按钮的Picture属性装入了一个图片,但却发现图片没有显示出来,要使图片显示出来,应设置它的【】属性。
Aperson’shomeisasmuchareflectionofhispersonalityastheclotheshewears,thefoodheeatsandthefriendswithwhomh
最新回复
(
0
)