首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
admin
2015-12-22
34
问题
证明:若f(x),g(x)都是可微函数,且z≥a时,∣f′(x)∣≤g′(x),则当x≥a时,∣f(x)―f(a)∣≤g(x)―g(a).
选项
答案
为证g(x)一g(a)≥f(x)一f(a),即证 g(x)一f(x)≥g(a)一f(a). 需作辅助函数φ(x)=g(x)一f(x),对φ(x)在[a,x]上使用拉格朗日中值定理.为证 一[g(x)一g(a)]≤f(x)一f(a), 即证 f(x)+g(x)≥f(a)+g(a). 需作辅助函数ψ(x)=f(x)+g(x),对ψ(x)在[a,x]上使用拉格朗日中值定理. 证 令φ(x)=g(x)一f(x),由拉格朗日中值定理得 φ(x)一φ(a)=φ′(ξ)(x一a), a<ξ<x. 当x≥a时,由于 ∣f′(x)∣≤g′(x), 则 一g′(x)≤f′(x)≤g′(x), 于是 φ′(ξ)=g′(ξ)一f′(ξ)≥0. 所以当x≥a时, φ(x)一φ(a)≥0, 即 g(x)一f(x)一[g(a)一f(a)]≥0, 则 g(x)一g(a)≥f(x)一f(a) (x≥a). ① 又令ψ(x)=g(x)+f(x),由拉格朗日中值定理得 ψ(x)一ψ(a)=ψ′(ξ)(x一a), a<ξ<x. 当x≥a时,由于 ∣f′(x)∣≤g′(x), 则 f′(x)+g′(x)≥0, 于是 ψ′(ξ)≥0. 故当x≥a时, ψ(x)一ψ(a)≥0, 即 g(x)+f(x)一[g(a)+f(a)]≥0. 所以,当x≥a时, g(x)一g(a)≥一[f(x)一f(a)], 即 f(x)一f(a)≥一[g(x)一g(a)]. ② 综合式①、式②得 ∣f(x)一f(a)∣≤g(x)一g(a).
解析
转载请注明原文地址:https://kaotiyun.com/show/mwbD777K
0
考研数学二
相关试题推荐
当劳动要素投入的平均产量最大时,()
某单位收发员为收集邮票,故意隐匿、毁弃他人信件,其行为侵犯了宪法规定的公民的哪项权利?()
在读屏时代,从倡导多读多写汉字的角度,“汉字听写”无疑是一件好事,但是一旦过度,好事也会变成坏事。比如,比赛偏重冷僻字词,参赛小选手们只能强化记忆.在比赛中展示了“中国式教育”。就连汉字拼音之父周有光先生也认为,现在把通用汉字增加到8000多个,这个数量实
a、6为自然数,且56a+392b为完全平方数,a+b的最小值是多少?
差异系数的使用应注意()
格赛尔的同卵双生子爬梯实验证明了人身心发展的重要条件是
求微分方程y〞+y′-2y=χeχ+sin2χ的通解.
设函数y=y(χ)在(0,+∞)上满足△y=(+χsinχ)△χ+o(△χ),且,则y(χ)=_______.
设f(x)是满足=1的连续函数,则当x→0时是关于x的________阶无穷小量.
设f(x)=x4sin+xcosx(x≠0),且当x=0时,f(x)连续,则()
随机试题
A、climbB、wildC、blindD、AprilD
应密闭贮藏于缸、罐中的饮片是()。
结构实体检验的内容应包括()。
适用于河谷狭窄,两岸地形陡峻,山岩坚实的山区河流的导流方法是()。
我国A外贸公司3月1日向美B商发去电传,发盘供应农产品1000公吨并列明“单层瓦楞纸箱装”。美商B收到我方电传后立即复电表示“接受,装新瓦楞纸箱装”,我方收到上述复电后即着手备货,准备好货物于约定的4月份装船。两周后,该农产品国际价格猛跌,美商于3月20日
郑伯克段于鄢初,郑武公娶于申,曰武姜。生庄公及共叔段。庄公寤生,惊姜氏,故名曰寤生,遂恶之。爱共叔段,欲立之。亟请于武公,公弗许。及庄公即位,为之请制。公曰:“制,岩邑也;虢叔死焉,佗邑唯命。”请京,使居之,谓之京城大叔。祭仲曰:“都城
某政府在何时开展调查工作,怎样接待群众来访等信息都做到公开透明,这体现了政府公共关系运作的()原则。
阅读现代诗歌,要多选些好诗歌,从中接受美的______,______自己的情操。
Whatisthelecturemainlyabout?
Abouthalfoftheinfantandmaternaldeathsindevelopingcountriescouldbeavoidedifwomenhadusedfamilyplanningmethods
最新回复
(
0
)