设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明: |∫abf(x)dx|≤.

admin2017-10-23  38

问题 设f(x)在[a,b]上有连续的导函数,且f(b)=0,当x∈[a,b]时|f’(x)|≤M,证明:
    |∫abf(x)dx|≤

选项

答案对∫abf(x)d(x一a)利用分部积分公式.由于 ∫abf(x)dx=∫abf(x)d(x—a)=(x—a)f(x)|ab—∫ab(x—a)f’(x)dx =一∫ab(x一a)f’(x)dx, 因此 ∫abf(x)dx|=|∫ab(x一a)f’(x)dx|≤M∫ab(x一a)dx=[*].

解析
转载请注明原文地址:https://kaotiyun.com/show/mzX4777K
0

最新回复(0)