首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
设n维向量α1,α2,…,αs的秩为r,则下列命题正确的是
admin
2015-04-30
43
问题
设n维向量α
1
,α
2
,…,α
s
的秩为r,则下列命题正确的是
选项
A、α
1
,α
2
,…,α
s
中任何r一1个向量必线性无关.
B、α
1
,α
2
,…,α
s
中任何r个向量必线性无关.
C、如果s>n,则α
s
必可由α
1
,α
2
,…,α
s—1
线性表示.
D、如果r=n,则任何n维向量必可由α
1
,α
2
,…,α
s
线性表示.
答案
D
解析
r(α
1
,α
2
,…,α
s
)=r
α
1
,α
2
,…,α
s
中一定存在r个向量线性无关,而任意r+1个向量必线性相关.
当向量组的秩为r时,向量组中既可以有r一1个向量线性相关,也可以有r个向量线性相关,故(A)、(B)均错误.例如向量α
1
,α
2
,α
3
,α
4
分别为
(1,0,0,0),(0,1,0,0),(0,0,1,0),(3,0,0,0),
其秩为3,其中α
1
,α
4
线性相关,α
1
,α
2
,α
4
也线性相关.该例说明,4维向量可以有2个向量线性相关,也可以有3个向量线性相关.但肯定有3个向量线性无关.
当s>n时,表明α
1
,α
2
,…,α
s
必线性相关,此时有α
i
可以由α
1
,α
i—1
,…,α
i+1
线性表示,但α
s
不一定能由α
1
,…,α
s—1
线性表示.故(C)不正确.
若r(α
1
,α
2
,…,α
s
)=n,则对任何凡维向量β必有r(α
1
,α
2
,…,α
s
,β)=n.故(D)正确.因此应选D.
转载请注明原文地址:https://kaotiyun.com/show/n5bD777K
0
考研数学二
相关试题推荐
目前,世界上发现的最早的纸出现在东汉年间。()
在SWOT分析矩阵中T和W代表()。
下列选项中,属于法律关系客体的是()。
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
快递公司服务范围即服务网络能覆盖或到达的范围,是衡量快递公司竞争力的最重要因素,也是快递企业提供快递服务的物质基础,服务范围决定了快递公司快件所能到达的服务区域,对于客户来说,快递公司能提供的服务范围当然是越大越好。以下哪项如果为真,不能支持上述判断?(
“现在走过来的是微信方阵,你看他们,左手手机,右手充电宝,身后背着一锅心灵鸡汤,胸前挂着佛经和养生秘方,手上拿着励志经典和情感小句,口中还在大喊‘亲,给孩子投个票吧’。”这是一个网络段子,但这里说的事每个人都可能“躺枪”,因为我们或多或少都做过,或者是经历
设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),令向量组(Ⅰ):α1,α2,…,αn;(Ⅱ)β1,β2,…,βn;(Ⅲ):γ1,γ2,…,γn,若向量组(Ⅲ)线性相关,则().
设f(χ)在(0,+∞)内一阶连续可微,且对χ∈(0,+∞)满足∫01f(χt)dt=2∫01f(t)dt+χf(χ)+χ3,又f(1)=0,求f(χ).
设y=y(x)由确定,求当
一质量为M、长为l的均匀杆AB吸引着一质量为m的质点C,此质点C位于杆AB的中垂线上,且与AB的距离为a.试求:(Ⅰ)杆AB与质点C的相互吸引力;(Ⅱ)当质点C在杆AB的中垂线上从点C沿y轴移向无穷远处时,克服引力所做的功.
随机试题
()是实施个别化教学计划的评估方式。
评判性思维
Canadaisthesecondlargestcountryintheworldinarea,althoughits【1】isonlysome25million,most【2】ina200-milestrip【3】
在其他条件相同的情况下,下列各项中,可以加速现金周转的是()。
审查人对贷款申请资料的完整性和合规性负责,审查要点包括()。
下例属于各国权属登记制度的类型的是()。
违反治安管理可从轻或者免于处罚的情节包括()。
社会主义建设总路线
中国进入改革开放和社会主义现代化建设的历史新时期的起点是
设f(x)=,讨论f(x)的单调性、凹凸性、拐点、水平渐近线.
最新回复
(
0
)