首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶反对称矩阵, (I)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设A是n阶反对称矩阵, (I)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵; (Ⅱ)举一个4阶不可逆的反对称矩阵的例子; (Ⅲ)证明:如果λ是A的特征值,那么一λ也必是A的特征值.
admin
2019-07-10
57
问题
设A是n阶反对称矩阵,
(I)证明:A可逆的必要条件是n为偶数;当n为奇数时,A
*
是对称矩阵;
(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;
(Ⅲ)证明:如果λ是A的特征值,那么一λ也必是A的特征值.
选项
答案
(I)按反对称矩阵定义:A
T
=一A,那么 |A|=|A
T
|=|—A|=(一1)
n
|A|,即[1一(一1)
n
]|A|=0. 若n=2k+l,必有|A|=0.所以A可逆的必要条件是n为偶数. 因A
T
=一A,由(A
*
)
T
=(A
T
)
*
有 (A
*
)
T
=(A
T
)
*
=(一A)
*
. 又因(kA)
*
=k
n-1
A
*
,故当n=2k+1时,有 (A
*
)
T
=(一1)
2k
A
*
=A
*
, 即A
*
是对称矩阵. (Ⅱ)例如,[*]是4阶反对称矩阵,且不可逆. (Ⅲ)若λ是A的特征值,有|λE—A|=0,那么 |-λE-A|=|(一λE-A)
T
|=|-λE—A
T
|=|-λE+A|=|一(λE-A)|=(一1)
n
|λE-A|=0, 所以一λ是A的特征值.
解析
转载请注明原文地址:https://kaotiyun.com/show/nJJ4777K
0
考研数学三
相关试题推荐
设X,Y为随机变量,若E(XY)=E(X)E(Y),则().
[*]
[*]
设总体X的概率密度为其中θ>一1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
求微分方程xy"+3y′=0的通解.
设求A的特征值,并证明A不可以对角化.
设A是n阶矩阵,下列结论正确的是().
级数收敛,则p的范围为__________.
计算下列二重积分:设D是由x≥0,y≥x与x2+(y—b)2≤b2,x2+(y一a)2≥a2(0<a<b)所围成的平面区域,求
设随机变量X服从参数为2的指数分布,证明:y=1-e-2X在区间(0,1)上服从均匀分布.
随机试题
简述常见的公共问题提出主体。
下列哪些激素可与核受体结合而调节转录过程
下列病证除哪项外,均可用防风治疗
患者,男,51岁。患胃癌2年。现症见脘痛剧烈,痛处固定,拒按,上腹肿块,肌肤甲错,眼眶黯黑,舌质紫暗,舌下脉络紫胀,脉弦涩。实验室检查:大便隐血试验示弱阳性。自服三七粉止血。治疗应首选
2014年1月1日,甲公司以1800万元自非关联方购人乙公司100%有表决权的股份,取得对乙公司的控制权;乙公司当日可辨认净资产的账面价值和公允价值均为1500万元。2015年度,乙公司以当年1月1日可辨认资产公允价值为基础计算实现的净利润为125万元
China’stradesurpluswiththeUSaccountedfor73percentofitstotalsurpluslastyear,butChinahadatrade______withother
京剧演员(),工武生,有“武生宗师”之盛誉。
宽带ISDN的协议分为几个面和几个层?()
UnpopularSubjects?Isthereaplaceintoday’ssocietyforthestudyofuselesssubjectsinouruniversities?Justover100yea
James:How’sKellydoing?Joan:______
最新回复
(
0
)