首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有( ).
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有( ).
admin
2020-03-01
45
问题
设α
1
,α
2
,α
3
线性无关,β
1
可由α
1
,α
2
,α
3
线性表示,β
2
不可由α
1
,α
2
,α
3
线性表示,对任意的常数k有( ).
选项
A、α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关
B、α
1
,α
2
,α
3
,kβ
1
+β
2
线性相关
C、α
1
,α
2
,α
3
,β
1
+kβ
2
线性无关
D、α
1
,α
2
,α
3
,β
1
+kβ
2
线性相关
答案
A
解析
因为β
1
可由α
1
,α
2
,α
3
线性表示,β
2
不可由α
1
,α
2
,α
3
线性表示,所以kβ
1
+β
2
一定不可以由向量组α
1
,α
2
,α
3
线性表示,所以α
1
,α
2
,α
3
,kβ
1
+β
2
线性无关,选(A).
转载请注明原文地址:https://kaotiyun.com/show/nMA4777K
0
考研数学二
相关试题推荐
若线性方程组有解,则常数a1,a2,a3,a4应满足条件________
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’(2)=____________.
设A是4×3矩阵,且r(A)=2,而B=,则r(AB)=____________。
设函数则f’(x)=__________.
设向量组α1=(2,1,1,1),α2=(2,1,a,a),α3=(3,2,1,a),α4=(4,3,2,1)线性相关,且a≠1,则a=________.
设α=(1,一1,a)T是的伴随矩阵A*的特征向量,其中r(A*)=3,则a=______。
设函数z=z(x,y)由方程z=e2x—3z+2y确定,则=______。
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对(a≤x≤b)满足f’’(x)+g(x)-f’(x)-f(x)=0.求证:f(x)≡0(x∈[a,b]).
若函数f(x)在[0,1]上二阶可微,且厂f(0)=f(1),|f”(x)|≤1,证明:|f’(x)|≤在[0,1]上成立.
在空间直角坐标系的原点处,有一质量为M1的恒星,另有一质量为M2的恒星在椭圆上移动,问两恒星间万有引力大小何时最大,何时最小。
随机试题
《劳动法》规定,新建、改建、扩建工程的劳动安全卫生设施必须与主体工程()
A.胸脊髓B.腰脊髓C.颈脊髓D.马尾神经E.尾椎斗篷后野照射全程需要保护的正常组织或器官为
患者,男,28岁,尿道流脓伴排尿痛3天。发病4天前有不洁性交史,发病前1天与其爱人有性生活史。体格检查:尿道口见大量黄绿色脓性分泌物。若患者尿道分泌物病原学检查仅存在淋球菌感染,治疗上应首选
[2008年第32题]检查固定在模板上的预埋件和预留孔洞的位置及尺寸,用下列哪种方法?
建筑消防工作大体上可以划分为四个主要环节,分别为()。
单位银行结算账户按用途分为()。
首次公开发行股票,发行人不得有下列( )影响持续盈利能力的情形。
债权人甲与债务人乙约定由乙向丙履行债务,乙未履行,则乙应向丙承担违约责任。()
相关系数的取值范围是()。
WhyLearningSpanish?TheimportanceofSpanishisgrowinginEurope.Spanish,with400millionspeakers,isthefourthmostcom
最新回复
(
0
)