首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A正定,X=(x1,x2,…,xn)T。证明:二次型为正定二次型。
设n阶矩阵A正定,X=(x1,x2,…,xn)T。证明:二次型为正定二次型。
admin
2015-09-14
61
问题
设n阶矩阵A正定,X=(x
1
,x
2
,…,x
n
)
T
。证明:二次型
为正定二次型。
选项
答案
[*] 由于A正定,有|A|>0,且A
-1
正定,故对于任意x≠0,X∈R
n
,有X
T
A
-1
X>0,[*]f(X)=|A|X
T
A
-1
X>0,故f(X)正定。
解析
转载请注明原文地址:https://kaotiyun.com/show/neU4777K
0
考研数学三
相关试题推荐
马克思曾经指出:“理论在一个国家实现的程度,总是决定于理论满足于这个国家的需要的程度。”源自西方的马克思主义之所以能够在中国大地扎根、开花、结果,从根本上说,是因为其契合了近现代以来中国社会的迫切需要。最先提出“马克思主义中国化”命题的著作是
商品具有使用价值和价值两个因素或两种属性,是使用价值和价值的矛盾统一体。下列关于商品的使用价值的说法,正确的是
马克思指出:“资本主义社会的经济结构是从封建社会的经济结构中产生的。后者的解体使前者的要素得到解放。”资本主义产生的途径有
建设社会主义文化强国,必须提高国家文化软实力。提高国家文化软实力,要推动公共文化服务标准化、均等化,坚持
邓小平指出:“关于真理标准问题的争论,是个思想路线问题,是个政治问题,是个关系到党和国家前途和命运的问题。”关于真理标准问题的讨论的实质在于
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设α1,α2,…,αs是一组n维向量,则下列结论中,正确的是().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
随机试题
Whenthereismoneyenoughtosatisfyonelevelofneeds,anotherlevelappears.
能够饱含并透过相当数量重力水的岩层或土层称为()。
(2006年)微分方程(1+y)dx-(1-x)dy=0的通解是()。
从经济效益、环境效益和社会效益三者统一的社会责任目标出发,进行项目决策,是()的要求。
设备安装工程概算的编制方法不包括( )。
以下软件中,不应视为会计核算软件的是()。
甲公司2015年至2018年对乙公司股票投资的有关资料如下:(1)2015年1月1日,甲公司向乙公司某大股东发行每股面值为1元、公允价值为3.5元的普通股1000万股,同时承担该股东对第三方的债务1000万元(未来现金流量的现值),以获取该股东拥有的
表示智力高低的一种理想指标是()。
下列常用调味品或食材组合中,不可以作为中药药材或药引的是()。
验证和确认的主要活动有______。A)可跟踪性分析B)关键性分析C)评估和接口分析D)以上全部
最新回复
(
0
)