首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
设a为常数,讨论两曲线y=ex与的公共点的个数及相应的a的取值范围.
admin
2018-07-23
78
问题
设a为常数,讨论两曲线y=e
x
与
的公共点的个数及相应的a的取值范围.
选项
答案
若a=0,则易知y=e
x
与y=0无公共点,以下设a≠0.讨论y=e
x
与[*]交点的个数,等同于讨论方程[*]的根的个数,亦即等同于讨论函数 f(x)=xe
x
-a 的零点个数. [*] 得唯一驻点x
0
=-1.当x<-1时,fˊ(x)<0;当x>-1时,fˊ(x)>0.所以 min{f(x)}=f(-1)=-e
-1
-a. 又 [*] ①设-e
-1
-a >0,即设a<-e
-1
,则min{ f (x)}>0,f (x)无零点; ②设-e
-1
-a=0,即设a=-e
-1
,则f(x)有唯一零点x
0
=-1; ③设-e
-1
-a <0,即设a>-e
-1
.又分两种情形: (i)设-e
-1
<a<0.则有f(-∞)=-a >0.f(-1)=-e
-1
-a <0.而在区间(-∞,-1)内f(x)单调递减,在区间(-1,+∞)内f(x)单调递增.故f(x)有且仅有两个零; (ii)设a>0.易知f(x)=xe
x
在区间(-∞,0]内无零点,而在区间(0,+∞)内,f(0)=-a <0,f(+∞)=+∞,fˊ(x)=(x+1)e
x
>0,所以f(x)在区间(0,+∞)内刚好有1个零点.讨论完毕. 综上,结论是: 当a<-e
-1
或a=0时,无交点;当a=-e
-1
时,有唯一交点(切点);当-e
-1
<a<0时.有两个交点;当a>0时,在区间(-∞,0]内无交点.而在区间(0,+∞)内,即第一象限内有唯一交点.
解析
转载请注明原文地址:https://kaotiyun.com/show/noj4777K
0
考研数学二
相关试题推荐
[*]
设a1,a2,a3是4元非齐次线性方程组Ax=b的三个解向量,且秩(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
设区域D为x2+y2≤R2,则=_______。
已知函数y(x)可微(x>0)且满足方程则y(x)=_________.
在曲线上求一点,使通过该点的切线平行于x轴.
设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f’(ξ)=0.
设φ(x)=∫0x(x-t)2f(t)dt,求φ"’(x),其中f(x)为连续函数
(2007年)如图,连续函数y=f(χ)在区间[-3,-2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(χ)=∫0χf(t)dt,则下列结论正确【】
设A是m×n阶矩阵,则下列命题正确的是().
随机试题
男性,72岁。哮喘史40年,近5年来发生双下肢水肿,近1周哮喘加重,白天发作每周>2次,每天夜间均有发作,活动受限,没有急性加重症状。下列检查对诊断肺源性心脏病有意义的是
A.1周B.2~4周C.6周D.3个月E.4~6个月
患者,男,26岁。先天性心脏病致心力衰竭,应用强心苷疗效不显著。可试换用的药物是()
斩假石又称剁斧石,是属于下列哪种材料?[1999年第004题]
【2011年第70题】钢结构柱脚在地面以下的部分应采用混凝土包裹,保护层厚度不应小于50mm,并应使包裹混凝土高出地面至少:
烈日:蝉鸣
求极限
软件测试是保证软件质量的重要措施,它的实施应该是在______。
GesturesI.Universalusageofgesturesincommunication1)GesturesarewidelyusedespeciallyinArabcountries.2)Gesturesh
A、Themandislikesit.B、Themanlikesit.C、Touristsdislikeit.D、Thepeopleherelikeit.A本题关键在于but一词后男士的回答:这儿没人会同意你的观点,可知男
最新回复
(
0
)