首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
已知α1=(1,1,0,2)T,α2=(一1,1,2,4)T,α3=(2,3,a,7)T,α4=(一1,5,一3,a+6)T,β=(1,0,2,6)T,问a,b取何值时,(Ⅰ)β不能由α1,α2,α3,α4线性表示?(Ⅱ)β能用α1,α2,α3,α4线性表
admin
2016-10-26
28
问题
已知α
1
=(1,1,0,2)
T
,α
2
=(一1,1,2,4)
T
,α
3
=(2,3,a,7)
T
,α
4
=(一1,5,一3,a+6)
T
,β=(1,0,2,6)
T
,问a,b取何值时,(Ⅰ)β不能由α
1
,α
2
,α
3
,α
4
线性表示?(Ⅱ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法唯一;(Ⅲ)β能用α
1
,α
2
,α
3
,α
4
线性表出,且表示法不唯一,并写出此时表达式.
选项
答案
设x
1
α
1
+x
2
α
2
+x
3
α
3
+x
3
α
4
=β,对增广矩阵(α
1
,α
2
,α
3
,α
4
[*]β)作初等行变换,有 [*] (Ⅰ)当a=1,b≠2或a=10,b≠一1时,方程组均无解.所以β不能由α
1
,α
2
,α
3
,α
4
线性表出. (Ⅱ)当a≠1且a≠10时,[*]b方程组均有唯一解.所以β能用α
1
,α
2
,α
3
,α
4
线性表示且表示法唯一. (Ⅲ)方程组在两种情况下有无穷多解,即(1)当a=10,b=-1时,方程组有无穷多解: x
4
=t,x
3
=t+[*] 即 β=[*]α
3
+tα
4
. (2)当a=1,b=2时,方程组有无穷多解:x
4
=[*] 即 β=[*]α
4
.
解析
转载请注明原文地址:https://kaotiyun.com/show/o9u4777K
0
考研数学一
相关试题推荐
设A是n(n≥3)阶矩阵,满足A3=O,则下列方程组中有惟一零解的是().
由Y=lgx的图形作下列函数的图形:
求下列函数的导数:
计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设f(u,v)是二元可微函数=________.
(1997年试题,三)在某一人群中推广新技术是通过其中已掌握新技术的人进行的.设该人群的总人数为N,在t=0时刻已掌握新技术的人数为x0,在任意时刻t已掌握新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数之积成正比,比例常数
设求其中C是圆周x2+y2=32,取逆时针方向.
飞机以匀速v沿y轴正向飞行,当飞机行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.(Ⅰ)求导弹运行轨迹满足的微分方程及初始条件;(Ⅱ)求导弹的运行轨迹
随机试题
茨威格的代表作有()
企业的定价目标主要有哪几种?
简述急性胰腺炎的基本病理改变。
氟尿嘧啶常用于治疗
根据《水电工程验收管理办法》(2015年修订版),水电工程在()时应进行阶段验收。
模板支架、脚手架拆除施工时,施工现场应采取()等措施,确保拆除施工安全。
某房地产市场调研人员在房交会上运用询问法获得下表所示的数据。根据上述资料,回答下列问题。该调研结果表明,有相当一部分被调研者有购房意向,超过正常估计的水平,其出现误差的主要原因可能是()。
下列说法中,不正确的有()。
完善民间投资的配套设施和实施细则,增加了民资的投资选择余地,对于缺乏投资渠道的民间资本可以起到___________作用,避免民间资本集中于住房、股票等___________的投资领域,也可激活民间的创业热情,弥补政府资金的不足。填入划横线部分最恰当的一项
この薬を飲めば、かぜが()。
最新回复
(
0
)