首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f”(x)﹢[f’(x)]2-4f(x)=0.则在区间(a,b)内f(x) ( )
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f”(x)﹢[f’(x)]2-4f(x)=0.则在区间(a,b)内f(x) ( )
admin
2020-02-28
74
问题
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f
”
(x)﹢[f
’
(x)]
2
-4f(x)=0.则在区间(a,b)内f(x) ( )
选项
A、存在正的极大值,不存在负的极小值.
B、存在负的极小值,不存在正的极大值.
C、既有正的极大值,又有负的极小值.
D、恒等于零.
答案
D
解析
设存在x
0
∈(a,b),f(x
0
)﹥0且为f(x)的极大值,于是f
’
(x
0
)=0,代入所给方程得f
”
(x
0
)=4f(x
0
)﹥0,则f(x
0
)为极小值,矛盾,进一步可知不存在c∈(a,b),使f(c)﹥0,因若不然,由于f(a)=f(b)=0,推知在(a,b)内f(x)存在正的最大值,同时也是极大值,与已证矛盾.
类似地可证,f(x)在(a,b)内取不到负值.
于是只能选(D).当然,f(x)=0是满足所给方程的.
转载请注明原文地址:https://kaotiyun.com/show/oPA4777K
0
考研数学二
相关试题推荐
设矩阵(1)已知A的一个特征值为3,试求y;(2)求矩阵P,使(AP)T(AP)为对角矩阵.
已知两个线性方程组同解,求m,n,t.
求函数F(x)=的间断点,并判断它们的类型.
设f(x)在(0,+∞)内连续且单调减少.证明:∫1n+1f(x)dx≤f(k)≤f(1)+∫1nf(x)dx.
已知下列非齐次线性方程组(I),(II):(1)求解方程组(I),用其导出组的基础解系表示通解;(2)当方程组中的参数m,n,t为何值时,方程组(I)与(Ⅱ)同解?
设f(x)在上具有连续的二阶导数,且f’(0)=0.证明:存在ξ,η,使得
设y=f(χ)可导,且y′≠0.(Ⅰ)若已知y=f(χ)的反函数χ=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(χ)二阶可导,则.
设D={(x,y)|(x一1)2+(y一1)2=2},计算二重积分(x+y)dσ。
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
随机试题
A.胺类激素B.肽类激素C.蛋白质激素D.类同醇激素甲状腺激素是
分泌性腹泻的腹痛特征是()
根据《招标投标法实施条例》,潜在投标人或者其他利害关系人对资格预审文件有异议的,应当在提交资格预审申请文件截止时间()日前提出。招标人应当自收到异议之日起()日内作出答复。
背景资料:某公司承接了某城市道路的改扩建工程。工程中包含一段长240m的新增路线(含下水道200m)和一段长220m的路面改造(含下水道200m),另需拆除一座旧的人行天桥,新建一座立交桥。工程位于城市繁华地带,建筑物多,地下管网密集,交通量大。
对于闭式细水雾系统的联动试验可利用()进行模拟。
根据个人所得税的有关规定,两个以上纳税人共同取得同一项目收入的,其个人所得税的计税方法为()。
下列反应中氯元素既表现氧化性又表现还原性的是()。
从严格的意义上说,中国的改革并不是一个纯粹的经济问题,只不过在经济、政治、社会、文化这个大系统中经济的改革走在了前列。但随着改革的深入,随着改革走入中期,经济改革超前而其他方面的改革滞后所造成的社会心理和社会道德的差异,己经开始教育我们了。这段话
网络管理员使用DHCP服务器对公司内部主机的IP地址进行管理。在DHCP客户机上执行“ipeonfig/all”得到的部分信息如图(a)所示,该客户机在进行地址续约时捕获的其中1条报文及相关分析如图(b)所示。请分析图中的信息,补充图(b)中空白处的内容。
Toremaincompetitiveintheinternationalmarketplace,U.S.industrieshaverecognizedthattheymustattractthebrightest,m
最新回复
(
0
)