首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,f’(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明: ∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
设f(x)在[a,b]上可导,f’(x)+[f(x)]2-∫axf(t)dt=0,且∫abf(t)dt=0。证明: ∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
admin
2018-01-30
48
问题
设f(x)在[a,b]上可导,f
’
(x)+[f(x)]
2
-∫
a
x
f(t)dt=0,且∫
a
b
f(t)dt=0。证明:
∫
a
x
f(t)dt在(a,b)的极大值不能为正,极小值不能为负;
选项
答案
记F(x)=∫
a
x
f(t)dt,假设F(x)在(a,b)内能取到正的极大值,且记该极大值点为x
0
,于是F
’
(x
0
)=0,F(x
0
)>0,即f(x
0
)=0,∫
a
x
0
f(t)dt>0。 在方程f
’
(x)+[f(x)]
2
一∫
a
x
f(t)dt=0中令x=x
0
,得F
’’
(x
0
)=∫
a
x
0
f(t)dt>0,故F(x
0
)应是极小值,这与假设矛盾。所以∫
a
x
f(t)dt在(a,b)的极大值不能为正,极小值不能为负。
解析
转载请注明原文地址:https://kaotiyun.com/show/oTk4777K
0
考研数学二
相关试题推荐
用级数展形法计算下列积分的近似值(计算前三项):
求下列不定积分:
下列方程中有一个是一阶微分方程,它是[].
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
A、高阶无穷小.B、低阶无穷小.C、同阶但非等价无穷小.D、等价无穷小.C
交换二次积分的积分次序:
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A为3阶实对称矩阵,A的秩为2,且求A的所有特征值与特征向量;
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设矩阵A=(aij)3×3,满足A*=A*,其中AT为A的伴随矩阵,AT为A的转置矩阵.若a11a12,a13为三个相等的正数,则a11为().
随机试题
在下列断定中,违反矛盾律的是()
除对原发病进行综合治疗外,治疗肺气肿、改善肺功能的重要措施为()
对发行债券的说法中不正确的是()。
下述中正确的是()。
下列各项中,属于会计工作的政府监督主体的有()。
下列各项属于影响实载率的因素有()。
让人高兴的语言往往柔和甜美,所以称之为()
联系实际,谈谈正确儿童观的内容
辐射指的是能量在空间传播的过程。下列关于辐射的说法不成立的是()。
下列选项中,属于唐朝“杂律”规定的内容有()。
最新回复
(
0
)