首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是( )
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是( )
admin
2019-07-12
52
问题
设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是( )
选项
A、r=n
B、r≥n.
C、r<n.
D、r>n.
答案
C
解析
将矩阵A按列分块,A=(α
1
,α
2
,…,α
n
),则Ax=0的向量形式为
x
1
a
1
+x
2
a
2
+…+x
n
a
n
=0,
而Ax=0有非零解甘
α
1
,α
2
,…,α
n
线性相关
r(α
1
,α
2
,…,α
n
)<n
r(A)<n.
所以应选C.
转载请注明原文地址:https://kaotiyun.com/show/oVJ4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
(2007年)设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y条件下,X的条件概率密度fX|Y(x|y)为()
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
设P为可逆矩阵,A=PTP.证明:A是正定矩阵.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0.的解.
设f(x)为连续函数,计算其中D是由y=x3,y=1,x=-1围成的区域.
曲线的渐近线的条数为().
随机试题
企业对社会的责任具体体现在()
预述走和平发展道路的基本内涵和重大意义。
5岁男孩,驼背、胸痛5个月,消瘦、贫血,无神经系统症状。经检查诊断为双肺浸润性结核,第6-8胸椎结核.伴椎旁脓肿。血沉112mm/h。在支持疗法及全身抗结核治疗同时应首选
女性,30岁。因出现类似早孕症状两次到某县医院门诊就医,大夫简单检查后均诊断为妇科炎症,但该女士服药多日症状未见缓解。半个月后,因突然阴道大出血和急腹症被送往医院抢救后确诊为异位妊娠。该案例中,初诊医生可能违背的临床诊疗伦理要求是
急性细菌性痢疾病变最显著的部位是
债券发行人自身的违约风险是影响债券收益率的重要因素。()
下列说法中,不正确的是()。
项目风险评价的分类中,按项目风险管理的内容不同可分为________。
根据下表,回答86-90题。世界部分城市气候状况注:第6、7、9、10、11、12列中温度、降水和日照指标之后的数字表示特定的月份。下列说法与资料相符的是:
下列说法中,正确的是______。
最新回复
(
0
)