首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0. l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0. l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-07-22
67
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0.
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. 记 [*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点[*]r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ac-ac-bc) =[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/ohN4777K
0
考研数学二
相关试题推荐
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=_______.
设D:χ2+y2≤16,则|χ2+y2-4|dχdy等于().
设f(x)是连续函数,a,b为常数,则下列说法中不正确的是[].
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
求微分方程χy〞+2y′=eχ的通解.
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
(01年)设f(x)在区间[一a,a](a>0)上具有二阶连续导数,f(0)=0,(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[一a.a]上至少存在一点η,使a3f”(η)=3∫-aaf(x)dx
已知f’(x)=arctanx2,则
随机试题
在对接焊接接头中,钢板厚度________一般不开坡口。
关于炎症反应的防御作用,下列哪项错误
某植物提取物遇皮肤呈蓝色,可能含有()
制备易氧化药物注射剂应加入的金属离子螯合剂是
纠纷裁决委员会的委员特别应具有( )方面的丰富经验。
经济资本是指在一个给定的置信水平下,用来吸收或缓冲所有风险带来的非预期损失的资本。置信水平由银行的管理层规定,选择的置信水平越高,发生风险的概率就()。
下列关于共有的说法正确的有()。
设计了巴塞罗那世界博览会德国馆的是()。
中华人民共和国的成立标志着
Somefuturologistshaveassumedthatthevastupsurge(剧增)ofwomenintheworkforcemayportendarejectionofmarriage.Manywom
最新回复
(
0
)