首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0. l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0. l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2019-07-22
66
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0.
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. 记 [*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点[*]r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=-(a+b+c)(a
2
+b
2
+c
2
-ac-ac-bc) =[*](a+b+c)[(a-b)
2
+(b-c)
2
+(c-a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a-b)
2
+(b-c)
2
+(c-a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/ohN4777K
0
考研数学二
相关试题推荐
计算二重积分(χ+y)dχdy,其中D:χ2+y2≤χ+y+1.
设f(χ)二阶可导,f(1)=0,令φ(χ)=χ2f(χ),证明:存在ξ∈(0,1),使得φ〞(ξ)=0.
[*]=-∫lnsinχd(cotχ)=-cotχlnsinχ+∫cotχ[*]dχ=-cotχlnsinχ+∫(csc2χ-1)dχ=-cotχlnsinχ-cotχ-χ+C
设L:y=e-χ(χ≥0).(1)求由y=e-χ、χ轴、y轴及χ=a(a>0)所围成平面区域绕χ轴一周而得的旋转体的体积V(a).(2)设V(c)=V(a),求c.
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
求微分方程=1+χ+y+χy的通解.
(96年)求函数在x=0点处带拉格朗日型余项的n阶泰勒展开式.
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
设多项式f(x)=,则x4的系数和常数项分别为()
求在χ=1时有极大值6,在χ=3时有极小值2的三次多项式.
随机试题
关于阴道的解剖哪项正确
下列有关氧化磷酸化的叙述,错误的是
半衰期是指
中国公司从外国进口货物并采用信用证结算时,若发现出口商有欺诈情形,可以根据我国法律规定的欺诈例外程序依法保护自己的合法利益,如下表述哪些符合我国目前的规定?
公共建筑吊顶的吊杆长度大于2500mm时,应采取哪项加强措施?
某建设项目,当i1=20%时,净现值为78.70万元;当i2=23%时,净现值为-60.54万元,则该建设项目的内部收益率为( )。
骨干教师华老师教学能力突出,经常一个人钻研教学,不愿意参加集体备课。这说明华老师缺乏()。
根据《中华人民共和国民办教育促进法》的规定,民办学校和公办学校均是教育法律体系的主体。()
UML图不包括()。
顺序查找法适合于______结构的线性表。
最新回复
(
0
)