首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n阶实对称矩阵A正定的充分必要条件是( )
n阶实对称矩阵A正定的充分必要条件是( )
admin
2018-05-17
48
问题
n阶实对称矩阵A正定的充分必要条件是( )
选项
A、二次型x
T
Ax的负惯性指数为零。
B、存在可逆矩阵P使P
-1
AP=E。
C、存在n阶矩阵C使A=C
-1
C。
D、A的伴随矩阵A
*
与E合同。
答案
D
解析
选项A是必要不充分条件。这是因为r(A)=p+q≤n,当q=0时,有r(A)=p≤n。此时有可能P<n,故二次型x
T
Ax不一定是正定二次型。因此矩阵A不一定是正定矩阵。例如f(x
1
,x
2
,x
3
)=x
1
2
+5x
3
2
。
选项B是充分不必要条件。这是因为P
-1
AP=E表示A与E相似,即A的特征值全是1,此时A是正定的。但只要A的特征值全大于零就可保证A正定,因此特征值全是1是不必要的。选项C中的矩阵C没有可逆的条件,因此对于A=C
T
C不能说A与E合同,也就没有A是正定矩阵的结论。例如
显然矩阵不正定。
关于选项D,由于
,
所以D是充分必要条件。
转载请注明原文地址:https://kaotiyun.com/show/95k4777K
0
考研数学二
相关试题推荐
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
二元函数f(x,y)在点(x0,y0)处两个偏导数f’(x0,y0),fx’(x0,y0)存在是f(x,Y)在该点连续的
已知函数f(x)具有二阶导数,且f(0)=1,函数y=y(x)由方程y-xey-1=1所确定.设.
下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是().
方程yy’’=1+y’2满足初始条件y(0)=1,y’(0)=0的通解为__________.
设二二次型f(x1,x2,x3):XTAX=ax12+2x22+(-232)+2bx1x3(b>0),其中二:次矩阵A的特征值之和为1,特征值之积为-12.(Ⅰ)求a,b的值;(Ⅱ)利用正交变换将二次型f化为标准形,并写出
微分方程ydx+(x2-4x)dy=0的通解为_________.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少f(0)=0.试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
随机试题
(13—04)欧洲货币贷款协议中贷款人增订的保护自己利益的特殊条款是______。
水痘风热轻证的治疗原则是:
光学密度值的数学表达式为
以下哪些与磷酸氯喹相符
法律发展的两种类型
根据我国现行建筑安装工程费用组成,下列各费用项目中属于措施费的是()。
请按照要求完成相应的教学设计。要求:为检测教学目标是否达成,设计一道选项为四项的单项选择题和一道简答题,并给出答案和解析。
企业对会计政策变更采用追溯调整法时,应当按照会计政策变更的累积影响数调整当期期初的留存收益。()
拥挤的居住条件导致的市民健康状况明显下降,是A城面临的重大问题。因为A城和B城两个城市的面积和人口相当,所以A城所面临的上述问题必定会在B城出现。以下哪项最能反驳上述结论?()
有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个。已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?
最新回复
(
0
)