首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年试题,5)设函数f(x)在(0,+∞)上具有二阶导数,且f’’(x)>0,令un=f(n)=1,2,…,n,则下列结论正确的是( ).
(2007年试题,5)设函数f(x)在(0,+∞)上具有二阶导数,且f’’(x)>0,令un=f(n)=1,2,…,n,则下列结论正确的是( ).
admin
2019-05-06
42
问题
(2007年试题,5)设函数f(x)在(0,+∞)上具有二阶导数,且f
’’
(x)>0,令u
n
=f(n)=1,2,…,n,则下列结论正确的是( ).
选项
A、若u
1
>u
2
,则{u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
B
解析
因f
’’
(x)>0,故f
’
(x)在(0,+∞)上单调递增.若u
1
<u
2
,则
=f
’
C(c∈[1,2])>0,即n>2时,必有f
’
(n)>f
’
C>0,u
n
=f(n)也单调递增,且随n的增大,f
’
(n)增大,故f(n)增大更快,故应选D,即{u
n
}必发散.解析二举反例排除法设f(x)=一Inx,满足题意,且u
1
>=u
2
,但{lnx}={一Inn}发散,排除选项A;设f(x)=
,满足题意,且u
1
>u
2
,但{u
n
}={
}收敛,排除选项B;设f(x)=x
2
,满足题意,且u
1
<u
2
,但{u
n
}={n
2
}发散,排除选项C;故应选D.
转载请注明原文地址:https://kaotiyun.com/show/ot04777K
0
考研数学一
相关试题推荐
设总体X的概率分布为其中参数θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3).试求常数a1,a2,a3,使aiNi为θ的无偏估计量,并求T的方差.
设f(x)的一个原函数为F(x),且F(x)为方程xy’+y=ex的满足y(x)=1的解.求F(x)关于x的幂级数;
设f(x)连续,且∫0xtf(2x-t)dt=1/2arctanx2,f(1)=1,求∫12f(x)dx.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求xf(u)/uf(x).
设X的密度函数为fX(x)=(-∞<x<+∞),求Y=1-的密度fY(y).
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
[2010年]极限=().
随机试题
采用合同中工程量清单的单价或价格有()情况。
关于中国证券投资基金业协会的性质和组成,以下表述错误的是()。
《义务教育化学课程标准(2011年版)》中确立了化学课程改革的重点。以下不是重点内容的是()。
《论语》既不是由孔子亲自撰写的,也不是专门论述教育的著作。()
四个现代化
当Intel 8255A被设定成方式1时,其功能相当于( )。
如果指定参照完整性的删除规则为“级联”,则当删除父表中的记录时
在软件开发中,下面任务中不属于设计阶段的是()。
数据流图用于抽象描述一个软件的逻辑模型,数据流图由一些特定的图符构成。下面图符名标识的图符不属于数据流图合法图符的是
A、Totellpeoplehowtoprotecttheirownbody.B、Towarnpeoplenottoharmsmallanimals.C、Toaskpeoplenottosmokeforthe
最新回复
(
0
)