首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)*,α2=(2,1,1)*,α3=(-1,2,-3)*都是A属于λ=6的特征向量,求矩阵A.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)*,α2=(2,1,1)*,α3=(-1,2,-3)*都是A属于λ=6的特征向量,求矩阵A.
admin
2018-06-27
77
问题
设3阶实对称矩阵A的秩为2,λ
1
=λ
2
=6是A的二重特征值,若α
1
=(1,1,0)
*
,α
2
=(2,1,1)
*
,α
3
=(-1,2,-3)
*
都是A属于λ=6的特征向量,求矩阵A.
选项
答案
由r(A)=2知|A|=0,所以λ=0是A的另一特征值. 设矩阵A属于λ=0的特征向量α=(x
1
,x
2
,x
3
)
T
,由于实对称矩阵不同特征值的特征向量相互正 交,故有 [*] 解出此方程组的基础解系 α=(-1,1,1)
T
. 那么A(α
1
,α
2
,α)=(6α
1
,6α
2
,0),用初等变换法解此矩阵方程得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/pYk4777K
0
考研数学二
相关试题推荐
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3性表示,求a,b的值.
设f(x)在[0,1]上具有二阶导数.且满足条件|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c是(0,1)内任意一点,证明:.
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3.求矩阵A的特征向量;
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为导出y=y(x)满足的微分方程和初始条件;
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求D绕y轴旋转一周所得旋转体体积V.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求秩r(A+E).
微分方程xy’’一y’=x的通解是_______.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
随机试题
男,28岁,轻咳2个月,有盗汗。胸片如图本例最可能的诊断为
患者,女,58岁。有冠心病史3年。现胸闷,胸部刺痛,痛有定处,恶心呕吐,痰多白黏,头晕目眩。舌质紫暗,脉弦数。其治法是
A.逍遥散加减 B.龙胆泻肝汤加减 C.天王补心丹加减 D.生脉散加减 E.安神定志丸加减治疗瘿气之阴虚火旺证宜选用的方剂是
一束自然光从空气射到玻璃板表面上,当折射角为30°的反射光为完全偏振光,则此玻璃的折射率为()。
在工程咨询公司编制的技术建议书中,“对本项目的理解”应阐述的内容包括()。
下列关于工程质量保证金的说法中,正确的有()。
当进入一间屋时,有人关注盆景,有人注意看条幅,这是知觉的()
"I’venevermetahumanworthcloning,"sayscloningexpertMarkWesthusinfromthecrampedconfinesofhislabatTexasA&MUni
下面能作为软件需求分析工具的是
Smalldogsgenerallylivelongerthanbigdogs.Butbodysizeisn’ttheonlyfactorthatdetermineshowlongdogssurvive.Perso
最新回复
(
0
)