首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若α1,α2,α3线性无关,那么下列线性相关的向量组是
若α1,α2,α3线性无关,那么下列线性相关的向量组是
admin
2017-06-08
103
问题
若α
1
,α
2
,α
3
线性无关,那么下列线性相关的向量组是
选项
A、α
1
,α
1
+α
2
,α
1
+α
2
+α
3
.
B、α
1
+α
2
,α
1
-α
2
,-α
3
.
C、-α
1
+α
2
,α
2
+α
3
,α
3
-α
1
.
D、α
1
-α
2
,α
2
-α
3
,α
3
-α
1
.
答案
D
解析
用观察法.由
(α
1
-α
2
)+(α
2
-α
3
)+(α
3
-α
1
)=0,可知α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关.故应选D.
至于A,B,C线性无关的判断可以用秩也可以用行列式不为0来判断.
例如,A中r(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=r(α
1
,α
1
+α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3.
或(α
1
,α
1
+α
2
,α
1
+α
2
+α
3
)=
,
由行列式
≠0而知α
1
,α
1
+α
2
,α
1
+α
2
+α
3
线性无关.
转载请注明原文地址:https://kaotiyun.com/show/q0t4777K
0
考研数学二
相关试题推荐
A、I1≥I2≥I3B、I2≥I3≥I1C、I1≤I2≤I3D、I2≤I3≤I1B
[*]
设f(x)=∫0xsint/(π-t)dt,则∫0πf(x)dx=________.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
证明:当x≥5时,2x>x2.
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
随机试题
慢性肾小球肾炎的病程至少应大于
急性乳腺炎最常见于
女,45岁,晨起发现右侧口角歪斜,初步诊断为贝尔面瘫,正确的治疗方法是
适用于一切溃疡或烧伤,腐肉未脱,新肉未生之时的外治首选方是
某工人小组在正常的施工条件下进行砖墙的砌筑,作业过程中所消耗的时间属于定额工作时间的是()。
()不仅应成为一种检测的手段,更应该成为实施企业战略规划的重要工具。
英国医生普劳特首先指出有机食物可以分为三类物质,后来分别被称为糖类、脂肪和蛋白质。后来,19世纪的化学家和生物学家逐渐研究清楚这些食物的营养性能,他们发现,蛋白质是最基本而必不可少的,只要有蛋白质供应,机体便能存活。身体不能从糖类和脂肪中制造出蛋白质,因为
A、 B、 C、 D、 A
“许多事情我们可以讲一千个理由、一万个理由,但老百姓吃不上饭,就没有理由。‘民以食为天”’。这段话表明()(2006年单选)
Beforethe1850’s,theUnitedStateshadanumberofsmallcolleges,mostofthemdatingfromcolonialdays.Theyweresmall,ch
最新回复
(
0
)