首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A与B相似,且 (1)求a,b的值; (2)求可逆矩阵P,使P-1AP=B.
设矩阵A与B相似,且 (1)求a,b的值; (2)求可逆矩阵P,使P-1AP=B.
admin
2016-01-25
119
问题
设矩阵A与B相似,且
(1)求a,b的值;
(2)求可逆矩阵P,使P
-1
AP=B.
选项
答案
(1)首先将A的特征多项式分解成λ的因式的乘积.为此将|λE一A|中不含λ的某素消成零,使其所在的列(或行)产生λ的一次因式. [*] =(λ一2)[λ
2
一(a+3)λ+3(a-1)]. 因B的3个特征值为2,2,b,由A~B可知,A与B有相同的特征值,故A的特征值为λ
1
=λ
2
=2,λ
3
=b.由于2是A的二重特征值,故2是方程 λ
2
一(a+3)λ+3(a-1)=0 的根.把λ
1
=2代入上式即得a=5,因而有 |λE-A|=(λ-2)(λ
2
一8λ+12)=(λ-2)
2
(λ一6). 于是b=λ
3
=6. (2)解线性方程组(2E—A)X=0,(6E—A)X=0分别得到对应于λ
1
=λ
2
=2,λ
3
=6的特征向量 α
1
=[1,一1,0]
T
,α
2
=[1,0,1]
T
;α
3
=[1,一2,3]
T
令P=[α
1
,α
2
,α
3
],有P
-1
AP=B,于是P=[α
1
,α
2
,α
3
]即为所求.
解析
先求出A的3个特征值λ
1
,λ
2
,λ
3
,再分别求出A的对应于λ
i
的特征向量α
i
(i=1,2,3),则可求出可逆矩阵P=[α
1
,α
2
,α
3
].
转载请注明原文地址:https://kaotiyun.com/show/qKU4777K
0
考研数学三
相关试题推荐
经济基础决定上层建筑,上层建筑对经济基础具有反作用。上层建筑对经济基础的反作用集中表现在
心理学家在一项实验中发现,因被剥夺食物一定时间而饥肠辘辘的人,在一堆模棱两可的声音、文字、图形等符号中,对有关食物的符号最为敏感,可因绝食多日而力不能支的革命者面对敌人所送的美味佳肴却可以无动于衷。前者之所以敏感是因为被试者饥肠辘辘,有急需食物充饥的生存欲
在国际舆论格局中,总体上依然处于“西强我弱”的状态。研究表明,西方媒体掌握着全球90%以上的新闻信息资源,近70%的海外受众是通过西方媒体了解中国的。“落后就要挨打,贫穷就要挨饿,失语就要挨骂”。这说明了建设社会主义文化强国要()。
马克思曾经说过:“作为确定的人,现实的人,你就有规定,就有使命,就有任务,至于你是否意识到这一点,那都是无所谓的。这个任务是由于你的需要及其与现存世界的联系而产生的。”当代大学生承担的历史使命是()。
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
设一平面通过从点(1,-1,1)到直线的垂线,且与平面z=0垂直,求此平面的方程.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
随机试题
行为
已知某厂生产x件产品的成本C=25000+2x+x2(单位:元).试问:要使平均成本最小,应生产多少件产品?
有关门窗构造做法,下列叙述何者有误?
国家根据建设项目对环境的影响程度,对建设项目的环境影响实行分类管理,应当编制环境影响报告书的是()。
所谓套利组合是指满足()条件的证券组合。
王老师穿了一套新衣服,课前一进班级,有几个淘气的男同学就凑在一起,用调侃的语调大声喊道:“老师,我爱你。"下列处理方式,最恰当的一项是()。
下列属于古代东西方的教育的共同特征的是()
“凡事预则立,不预则废”,在哲学上反映的是()
设随机变量X1,X2,…,X100独立同分布,且EXi=0,DXi=0,i=,2,…,100,令=_____
A、Thewomancan’tgetcashbeforetheproceedsarecollected.B、Thereissomethingwrongwiththeproceeds.C、Thewomanwillbe
最新回复
(
0
)