首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 设函数f(x)=ln(x
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x2-ax+1),则称函数f(x)具有性质P(a). 设函数f(x)=ln(x
admin
2019-06-01
34
问题
设f(x)是定义在区间(1,+∞)上的函数,其导函数为f'(x).如果存在实数a和函数h(x),其中h(x)对任意的x∈(1,+∞)都有h(x)>0,使得f'(x)=h(x)(x
2
-ax+1),则称函数f(x)具有性质P(a).
设函数f(x)=ln(x)+
(x>1),其中b为实数
(i)求证:函数f(x)具有性质P(b);
(ii)求函数f(x)的单调区间.
选项
答案
由f(x)=ln x+[*],得f'(x)=[*].因为x>1时,h(x)=[*]>0,所以函数f(x)具有性质P(b). (ii)当b≤2时,由x>l得x
2
-bx+1≥x
2
-2x+1=(x-1)
2
>0,所以f'(x)>0,从而函数f(x)在区间(1,+∞)上单调递增.当b>2时,解方程x
2
-bx+1=0得x
1
=[*].因为x
1
=[*] 所以当x∈(1,x
2
)时,f'(x)<0;当x∈(x
2
,+∞)时,f'(x)>0;当x=x
2
时,f'(x)=0. 从而函数f(x)在区间(1,x
2
)上单调递减,在区间(x
2
,+∞)上单调递增. 综上所述,当b≤2时,函数f(x)的单调增区间为(1,+∞);当b>2时,函数f(x)的单调减区间为(1,[*]),单凋增区间为([*],+∞).
解析
转载请注明原文地址:https://kaotiyun.com/show/r0Fq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
如果顺次连结四边形ABCD各边中点得到的四边形是正方形,那么四边形ABCD的()。
圆柱底面半径扩大2倍,高不变,侧面积就扩大______倍,体积扩大______倍。
如图,菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF=______。
用换元法解方程则原方程可化为()。
一个带分数,整数部分是最小的奇数,分子是最小的质数,分母是最大的一位数,这个带分数是______,它的分数单位是______。
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球。(1)求取出的4个球均为黑球的概率:(2)求取出的4个球中恰有1个红球的概率。
巳知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为____________。
已知数列{an}的前n项和(n为正整数)。令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式。
在一个平面直角坐标系中,A点的坐标为(3,2),B点的坐标为(5,2),C点在直线x=y上,则折线ACB长度的最小值为____________。
位于坐标原点的一个质点P按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,质点P移动5次后位于点(2,3)的概率为()。
随机试题
主要用于大批量生产的产品和单件小批生产中关键工序的焊接工艺规程的文件形式是()。
1848年,第一次提出社会医学概念的人是
患者,男性,72岁,昏迷、意识不清3天急诊入院。患者入院首选的影像学检查方法是
男性,29岁。转移性右下腹痛伴发热36小时入院,诊断为急性阑尾炎。医生查体时,让病人仰卧,使右髋和右大腿屈曲,然后医生向内旋其下肢.引起病人右下腹疼痛,提示其阑尾位置
和其他房屋一样,钢筋混凝土结构的住宅,其建筑结构的特点有()。
蒸汽管道上()不必设置疏水阀。
要约不再对要约人和受要约人产生拘束,称为()。
某企业目前处于成熟发展阶段,公司目前的资产总额为10亿元,所有者权益总额为6亿元,其中股本2亿元,资本公积2亿元,负债总额为4亿元,公司未来计划筹集资本1500万元,所得税税率为25%,银行能提供的最大借款限额为500万元,假设股票和债券没有筹资限额。备选
在美国,每年接受治疗的精神忧郁症病人的人数超过200万人,是中国的接近10倍,而中国的人口则接近美国的10倍。以下各项如果为真,都有助于解释上述现象,除了:
SinceWorldWarII,allnationsoftheworldhaveshownagreatinterestineconomicgrowth.Mostofthemhaveshownapercentag
最新回复
(
0
)