首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中 用正交变换化二次型xTAx标准形,并写出所用正交变换;
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中 用正交变换化二次型xTAx标准形,并写出所用正交变换;
admin
2014-02-06
68
问题
设二次型x
T
Ax=x
1
2
+4x
2
2
+x
3
2
+2ax
1
x
2
+2bx
1
x
3
+2cx2x
3
,矩阵A满足AB=0,其中
用正交变换化二次型x
T
Ax标准形,并写出所用正交变换;
选项
答案
由[*]知,矩阵B的列向量是齐次方程组Ax=0的解向量.记[*].则Aα
1
=0=0α
1
,Aα
2
=0=0α
2
.由此可知λ=0是矩阵A的特征值(至少是二重),α
1
,α
2
是λ=0的线性无关的特征向量.根据∑λ
i
=∑a
n
有0+0+λ
3
=1+4+1,故知矩阵A有特征值λ=6因此,矩阵A的特征值是0,0,6.设λ=6的特征向量为α
3
=(x
1
,x
2
,x
3
)
T
,那么由实对称矩阵不同特征值的特征向量相互正交,有[*]解出α
3
=(1,2,一1)
T
.对α
1
,α
2
正交化,令β
1
=(1,0,1)
T
,则[*]再对β
1
,β
2
,β
3
单位化,得[*]那么经坐标变换x=Qy,即[*]二次型化为标准形X
T
Ax=y
T
Ay=6y
3
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/r7F4777K
0
考研数学三
相关试题推荐
人类正在经历第二次世界大战结束以来最严重的全球公共卫生突发事件,新冠肺炎疫情仍在全球蔓延,我国面临多重疾病负担并存、多重健康影响因素交织的复杂状况,特别是突发急性传染病传播迅速、波及范围广、危害巨大,同时人民群众多层次、多样化健康需求持续快速增长,健康越来
人类要生存繁衍、追求美好生活、获得自身的解放和发展,首先必须解决衣食住行等物质生活资料问题。马克思认为,人类第一个历史活动就是生产满足这些需要的物质资料,生产力是人类社会生活和全部历史的基础。下列说法正确的是
2020年9月8日,商务部前部长陈德铭在“服务业扩大开放暨企业全球化论坛”上发言表示,经历了抗疫的洗礼和反思,全球价值链会趋向短链化和区域化,推动经济增长的生产力将更多地依靠科技进步,一个数字化、网络化的智能社会将势不可挡。未来,中国将更注重科技人才,加紧
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
已知二次型f(x1,x2,x3)=3x12+cx22+x32-2x1x2+2x1x3-2x2x3的秩为2,则c的值为().
设A与B均为n,阶矩阵,且A与B合同,则().
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
求抛物线y=ax2+bx+c上具有水平切线的点.
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
如果存在直线y=ax+b,使当x→+∞时,曲线y=f(x)上的点M(x,y)到该直线的距离趋于零,则称直线y=ax+b为曲线y=f(x)(当x→+∞时)的渐近线.当斜率a≠0时,称此渐近线为斜渐近线.当x→-∞或x→∞时的渐近线的定义可类似给出.(1)根
随机试题
蓝色革命:指人类向水域索取食物的重大技术革命的统称。下列行为与“蓝色革命”不符的是()。
胁痛的病位主要是在
牙髓炎开髓引流的注意事项如下,除外A.局麻下进行B.锐利的钻针C.近髓处穿通D.不穿通髓腔E.穿髓孔出血
A.收敛止血、行血散瘀B.温经止血、散寒止痛C.温中止血、止呕、止泻D.收敛止血E.凉血止血、活血化瘀
关于花岗石特征的说法,正确的有()。
计算工会经费、职工福利费和职工教育经费的纳税调整额为()万元。
下面不属于商业信用的是()。
GB/T19001—2000标准对设计和开发的要求是针对()的设计和开发。
依据课程层级的不同,古德莱德提出了五种类型的课程。据此,由教育行政部门规定的课程方案和教材属于()。
Britainhaslawstomakesurethatwomenhavethesameopportunitiesasmenineducation,jobsandtraining.Butit’sstillunus
最新回复
(
0
)