首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x)=|x3+x2—2x|arctanx的不可导点的个数是( ).
函数f(x)=|x3+x2—2x|arctanx的不可导点的个数是( ).
admin
2016-12-16
53
问题
函数f(x)=|x
3
+x
2
—2x|arctanx的不可导点的个数是( ).
选项
A、3
B、2
C、1
D、0
答案
B
解析
利用下述判别法判别.
设f(x)=|x一a|φ(x),其中φ(x)在x=a处连续.若φ(a)=0,则f(x)在x=a处可导且f’(a)=φ(a)=0;若φ(a)≠0,则f(x)在x=a处不可导.
为此,常将函数中含绝对值部分的子函数分解为一次因式|x一a|的乘积。
因f(x)可分解成
f(x)=|x(x
2
+x一2)larctanx=|x(x+2) (x一1)| arctanx
=|x||x+2||x一1|arctanx.
显然arctanx在x=0,一2,1处连续.因
|x||x+2||x一1||arctanx=|x|φ
1
(x),
其中 φ
1
(x)|
x=0
=|x+2||x一1|arctanx|
x=0
=0,
故f(x)在x=0处可导.
|x||x+2|| x一1|arctanx=|x一1|(|x||x+2|arctanx)=|x一1|φ
2
(x),
而当x一l时,φ
2
(x)|
x=1
=|x||x+2|arctanx|
x=1
≠0,
故f(x)在x=1处不可导.又
|x||x+2||x一1|arctanx=|x+2| (|x||x一1| arctanx)=|x+2|φ
3
(x),
φ
3
(x)|
x=一2
=|x ||x一1|arctanx |
x=一2
≠0,
故f(x)在x=一2处不可导.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/rBH4777K
0
考研数学三
相关试题推荐
求下列函数的全微分:
对于函数f(x),如果存在一点c,使得f(c)=c,则称c为f(x)的不动点.(1)作出一个定义域与值域均为[0,1]的连续函数的图形,并找出它的不动点;(2)利用介值定理证明:定义域为[0,1],值域包含于[0,1]的连续函数必定有不动点.
利用函数的幂级数展开式求下列各数的近似值:(1)ln3(误差不超过10-4);(2)(误差不超过10-5);(3)sinh0.5(误差不超过10-4);(4)sin3°(误差不超过10-5).
利用函数的幂级数展开式求近似值:(1)e(精确到10-3);(2)cos2°精确10-4;(3)(精确到10-3).
设f(x),g(x)是C(2)类函数,证明:函数u=f(s+at)+g(s-at)满足波动方程
求二元函数u=x2-xy+y2在点(1,1)沿方向的方向导数及梯度,并指出u在该点沿哪个方向减少的最快?沿哪个方向u的值不变化?
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
随机试题
要素饮食滴注过快时不引起()
WhenwethinkofcreativepeoplethenamesthatprobablyspringtomindarethoseofmensuchasLeonardodaVinci,AlbertEinst
A、睾丸鞘膜积液B、精索鞘膜积液C、交通性鞘膜积液D、睾丸肿瘤E、腹股沟疝囊性肿块,站立时肿块明显增大,透光试验阳性,卧位时肿块缩小或消失,睾丸不能触及______。
设矩阵A经初等变换为B,则()。
2018年11月份,某企业确认短期借款利息7.2万元(不考虑增值税),收到银行活期存款利息收入1.5万元,开具银行承兑汇票支付手续费0.5万元(不考虑增值税)。不考虑其他因素,11月份企业利润表中“财务费用”项目的本期金额为()万元。
下列可以使持有的交易性现金余额降到最低的是()。
A、 B、 C、 D、 A图形各子图按照顺序排列,其内部分别有1~9个部分,故选A。
宇航员:月球车:探月
ThoughChinesepeoplemaywanttogettoknowAmericans,theyoftenfeelawkwardtalkingtoAmericans.Thelanguagebarrierisa
BecauseAtlascoursesstarteveryMondayoftheyear,there’sboundtobeonethatfitsinwithyouracademic,personalorprofe
最新回复
(
0
)